Creates a new #GCharsetConverter.
destination charset
source charset
Creates a binding between source_property
on source
and target_property
on target
.
Whenever the source_property
is changed the target_property
is
updated using the same value. For instance:
g_object_bind_property (action, "active", widget, "sensitive", 0);
Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.
If flags
contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
if target_property
on target
changes then the source_property
on source
will be updated as well.
The binding will automatically be removed when either the source
or the
target
instances are finalized. To remove the binding without affecting the
source
and the target
you can just call g_object_unref() on the returned
#GBinding instance.
Removing the binding by calling g_object_unref() on it must only be done if
the binding, source
and target
are only used from a single thread and it
is clear that both source
and target
outlive the binding. Especially it
is not safe to rely on this if the binding, source
or target
can be
finalized from different threads. Keep another reference to the binding and
use g_binding_unbind() instead to be on the safe side.
A #GObject can have multiple bindings.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
Creates a binding between source_property
on source
and target_property
on target,
allowing you to set the transformation functions to be used by
the binding.
This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
a #GClosure wrapping the transformation function from the source
to the target,
or %NULL to use the default
a #GClosure wrapping the transformation function from the target
to the source,
or %NULL to use the default
This is the main operation used when converting data. It is to be called
multiple times in a loop, and each time it will do some work, i.e.
producing some output (in outbuf)
or consuming some input (from inbuf)
or
both. If its not possible to do any work an error is returned.
Note that a single call may not consume all input (or any input at all). Also a call may produce output even if given no input, due to state stored in the converter producing output.
If any data was either produced or consumed, and then an error happens, then only the successful conversion is reported and the error is returned on the next call.
A full conversion loop involves calling this method repeatedly, each time
giving it new input and space output space. When there is no more input
data after the data in inbuf,
the flag %G_CONVERTER_INPUT_AT_END must be set.
The loop will be (unless some error happens) returning %G_CONVERTER_CONVERTED
each time until all data is consumed and all output is produced, then
%G_CONVERTER_FINISHED is returned instead. Note, that %G_CONVERTER_FINISHED
may be returned even if %G_CONVERTER_INPUT_AT_END is not set, for instance
in a decompression converter where the end of data is detectable from the
data (and there might even be other data after the end of the compressed data).
When some data has successfully been converted bytes_read
and is set to
the number of bytes read from inbuf,
and bytes_written
is set to indicate
how many bytes was written to outbuf
. If there are more data to output
or consume (i.e. unless the %G_CONVERTER_INPUT_AT_END is specified) then
%G_CONVERTER_CONVERTED is returned, and if no more data is to be output
then %G_CONVERTER_FINISHED is returned.
On error %G_CONVERTER_ERROR is returned and error
is set accordingly.
Some errors need special handling:
%G_IO_ERROR_NO_SPACE is returned if there is not enough space
to write the resulting converted data, the application should
call the function again with a larger outbuf
to continue.
%G_IO_ERROR_PARTIAL_INPUT is returned if there is not enough
input to fully determine what the conversion should produce,
and the %G_CONVERTER_INPUT_AT_END flag is not set. This happens for
example with an incomplete multibyte sequence when converting text,
or when a regexp matches up to the end of the input (and may match
further input). It may also happen when inbuf_size
is zero and
there is no more data to produce.
When this happens the application should read more input and then call the function again. If further input shows that there is no more data call the function again with the same data but with the %G_CONVERTER_INPUT_AT_END flag set. This may cause the conversion to finish as e.g. in the regexp match case (or, to fail again with %G_IO_ERROR_PARTIAL_INPUT in e.g. a charset conversion where the input is actually partial).
After g_converter_convert() has returned %G_CONVERTER_FINISHED the converter object is in an invalid state where its not allowed to call g_converter_convert() anymore. At this time you can only free the object or call g_converter_reset() to reset it to the initial state.
If the flag %G_CONVERTER_FLUSH is set then conversion is modified to try to write out all internal state to the output. The application has to call the function multiple times with the flag set, and when the available input has been consumed and all internal state has been produced then %G_CONVERTER_FLUSHED (or %G_CONVERTER_FINISHED if really at the end) is returned instead of %G_CONVERTER_CONVERTED. This is somewhat similar to what happens at the end of the input stream, but done in the middle of the data.
This has different meanings for different conversions. For instance in a compression converter it would mean that we flush all the compression state into output such that if you uncompress the compressed data you get back all the input data. Doing this may make the final file larger due to padding though. Another example is a regexp conversion, where if you at the end of the flushed data have a match, but there is also a potential longer match. In the non-flushed case we would ask for more input, but when flushing we treat this as the end of input and do the match.
Flushing is not always possible (like if a charset converter flushes at a partial multibyte sequence). Converters are supposed to try to produce as much output as possible and then return an error (typically %G_IO_ERROR_PARTIAL_INPUT).
the buffer containing the data to convert.
a buffer to write converted data in.
a #GConverterFlags controlling the conversion details
This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on object
. If the freeze count is
non-zero, the emission of "notify" signals on object
is
stopped. The signals are queued until the freeze count is decreased
to zero. Duplicate notifications are squashed so that at most one
#GObject::notify signal is emitted for each property modified while the
object is frozen.
This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Gets a named field from the objects table of associations (see g_object_set_data()).
name of the key for that association
Gets the number of fallbacks that converter
has applied so far.
Gets a property of an object.
The value
can be:
In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().
Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
the name of the property to get
return location for the property value
This function gets back user data pointers stored via g_object_set_qdata().
A #GQuark, naming the user data pointer
Gets the #GCharsetConverter:use-fallback property.
Gets n_properties
properties for an object
.
Obtained properties will be set to values
. All properties must be valid.
Warnings will be emitted and undefined behaviour may result if invalid
properties are passed in.
the names of each property to get
the values of each property to get
Initializes the object implementing the interface.
This method is intended for language bindings. If writing in C, g_initable_new() should typically be used instead.
The object must be initialized before any real use after initial construction, either with this function or g_async_initable_init_async().
Implementations may also support cancellation. If cancellable
is not %NULL,
then initialization can be cancelled by triggering the cancellable object
from another thread. If the operation was cancelled, the error
%G_IO_ERROR_CANCELLED will be returned. If cancellable
is not %NULL and
the object doesn't support cancellable initialization the error
%G_IO_ERROR_NOT_SUPPORTED will be returned.
If the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. See the [introduction][ginitable] for more details.
Callers should not assume that a class which implements #GInitable can be initialized multiple times, unless the class explicitly documents itself as supporting this. Generally, a class’ implementation of init() can assume (and assert) that it will only be called once. Previously, this documentation recommended all #GInitable implementations should be idempotent; that recommendation was relaxed in GLib 2.54.
If a class explicitly supports being initialized multiple times, it is recommended that the method is idempotent: multiple calls with the same arguments should return the same results. Only the first call initializes the object; further calls return the result of the first call.
One reason why a class might need to support idempotent initialization is if it is designed to be used via the singleton pattern, with a #GObjectClass.constructor that sometimes returns an existing instance. In this pattern, a caller would expect to be able to call g_initable_init() on the result of g_object_new(), regardless of whether it is in fact a new instance.
optional #GCancellable object, %NULL to ignore.
Checks whether object
has a [floating][floating-ref] reference.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
the name of a property installed on the class of object
.
Emits a "notify" signal for the property specified by pspec
on object
.
This function omits the property name lookup, hence it is faster than g_object_notify().
One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:
enum
{
PROP_0,
PROP_FOO,
PROP_LAST
};
static GParamSpec *properties[PROP_LAST];
static void
my_object_class_init (MyObjectClass *klass)
{
properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
0, 100,
50,
G_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_FOO,
properties[PROP_FOO]);
}
and then notify a change on the "foo" property with:
g_object_notify_by_pspec (self, properties[PROP_FOO]);
the #GParamSpec of a property installed on the class of object
.
Increase the reference count of object,
and possibly remove the
[floating][floating-ref] reference, if object
has a floating reference.
In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.
Since GLib 2.56, the type of object
will be propagated to the return type
under the same conditions as for g_object_ref().
Resets all internal state in the converter, making it behave as if it was just created. If the converter has any internal state that would produce output then that output is lost.
Releases all references to other objects. This can be used to break reference cycles.
This function should only be called from object system implementations.
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
If the object already had an association with that name, the old association will be destroyed.
Internally, the key
is converted to a #GQuark using g_quark_from_string().
This means a copy of key
is kept permanently (even after object
has been
finalized) — so it is recommended to only use a small, bounded set of values
for key
in your program, to avoid the #GQuark storage growing unbounded.
name of the key
data to associate with that key
Sets a property on an object.
the name of the property to set
the value
Sets the #GCharsetConverter:use-fallback property.
%TRUE to use fallbacks
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
name of the key
This function gets back user data pointers stored via
g_object_set_qdata() and removes the data
from object
without invoking its destroy() function (if any was
set).
Usually, calling this function is only required to update
user data pointers with a destroy notifier, for example:
void
object_add_to_user_list (GObject *object,
const gchar *new_string)
{
// the quark, naming the object data
GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
// retrieve the old string list
GList *list = g_object_steal_qdata (object, quark_string_list);
// prepend new string
list = g_list_prepend (list, g_strdup (new_string));
// this changed 'list', so we need to set it again
g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
}
static void
free_string_list (gpointer data)
{
GList *node, *list = data;
for (node = list; node; node = node->next)
g_free (node->data);
g_list_free (list);
}
Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().
A #GQuark, naming the user data pointer
Reverts the effect of a previous call to
g_object_freeze_notify(). The freeze count is decreased on object
and when it reaches zero, queued "notify" signals are emitted.
Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.
It is an error to call this function when the freeze count is zero.
Decreases the reference count of object
. When its reference count
drops to 0, the object is finalized (i.e. its memory is freed).
If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.
This is the main operation used when converting data. It is to be called
multiple times in a loop, and each time it will do some work, i.e.
producing some output (in outbuf)
or consuming some input (from inbuf)
or
both. If its not possible to do any work an error is returned.
Note that a single call may not consume all input (or any input at all). Also a call may produce output even if given no input, due to state stored in the converter producing output.
If any data was either produced or consumed, and then an error happens, then only the successful conversion is reported and the error is returned on the next call.
A full conversion loop involves calling this method repeatedly, each time
giving it new input and space output space. When there is no more input
data after the data in inbuf,
the flag %G_CONVERTER_INPUT_AT_END must be set.
The loop will be (unless some error happens) returning %G_CONVERTER_CONVERTED
each time until all data is consumed and all output is produced, then
%G_CONVERTER_FINISHED is returned instead. Note, that %G_CONVERTER_FINISHED
may be returned even if %G_CONVERTER_INPUT_AT_END is not set, for instance
in a decompression converter where the end of data is detectable from the
data (and there might even be other data after the end of the compressed data).
When some data has successfully been converted bytes_read
and is set to
the number of bytes read from inbuf,
and bytes_written
is set to indicate
how many bytes was written to outbuf
. If there are more data to output
or consume (i.e. unless the %G_CONVERTER_INPUT_AT_END is specified) then
%G_CONVERTER_CONVERTED is returned, and if no more data is to be output
then %G_CONVERTER_FINISHED is returned.
On error %G_CONVERTER_ERROR is returned and error
is set accordingly.
Some errors need special handling:
%G_IO_ERROR_NO_SPACE is returned if there is not enough space
to write the resulting converted data, the application should
call the function again with a larger outbuf
to continue.
%G_IO_ERROR_PARTIAL_INPUT is returned if there is not enough
input to fully determine what the conversion should produce,
and the %G_CONVERTER_INPUT_AT_END flag is not set. This happens for
example with an incomplete multibyte sequence when converting text,
or when a regexp matches up to the end of the input (and may match
further input). It may also happen when inbuf_size
is zero and
there is no more data to produce.
When this happens the application should read more input and then call the function again. If further input shows that there is no more data call the function again with the same data but with the %G_CONVERTER_INPUT_AT_END flag set. This may cause the conversion to finish as e.g. in the regexp match case (or, to fail again with %G_IO_ERROR_PARTIAL_INPUT in e.g. a charset conversion where the input is actually partial).
After g_converter_convert() has returned %G_CONVERTER_FINISHED the converter object is in an invalid state where its not allowed to call g_converter_convert() anymore. At this time you can only free the object or call g_converter_reset() to reset it to the initial state.
If the flag %G_CONVERTER_FLUSH is set then conversion is modified to try to write out all internal state to the output. The application has to call the function multiple times with the flag set, and when the available input has been consumed and all internal state has been produced then %G_CONVERTER_FLUSHED (or %G_CONVERTER_FINISHED if really at the end) is returned instead of %G_CONVERTER_CONVERTED. This is somewhat similar to what happens at the end of the input stream, but done in the middle of the data.
This has different meanings for different conversions. For instance in a compression converter it would mean that we flush all the compression state into output such that if you uncompress the compressed data you get back all the input data. Doing this may make the final file larger due to padding though. Another example is a regexp conversion, where if you at the end of the flushed data have a match, but there is also a potential longer match. In the non-flushed case we would ask for more input, but when flushing we treat this as the end of input and do the match.
Flushing is not always possible (like if a charset converter flushes at a partial multibyte sequence). Converters are supposed to try to produce as much output as possible and then return an error (typically %G_IO_ERROR_PARTIAL_INPUT).
the buffer containing the data to convert.
a buffer to write converted data in.
a #GConverterFlags controlling the conversion details
Initializes the object implementing the interface.
This method is intended for language bindings. If writing in C, g_initable_new() should typically be used instead.
The object must be initialized before any real use after initial construction, either with this function or g_async_initable_init_async().
Implementations may also support cancellation. If cancellable
is not %NULL,
then initialization can be cancelled by triggering the cancellable object
from another thread. If the operation was cancelled, the error
%G_IO_ERROR_CANCELLED will be returned. If cancellable
is not %NULL and
the object doesn't support cancellable initialization the error
%G_IO_ERROR_NOT_SUPPORTED will be returned.
If the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. See the [introduction][ginitable] for more details.
Callers should not assume that a class which implements #GInitable can be initialized multiple times, unless the class explicitly documents itself as supporting this. Generally, a class’ implementation of init() can assume (and assert) that it will only be called once. Previously, this documentation recommended all #GInitable implementations should be idempotent; that recommendation was relaxed in GLib 2.54.
If a class explicitly supports being initialized multiple times, it is recommended that the method is idempotent: multiple calls with the same arguments should return the same results. Only the first call initializes the object; further calls return the result of the first call.
One reason why a class might need to support idempotent initialization is if it is designed to be used via the singleton pattern, with a #GObjectClass.constructor that sometimes returns an existing instance. In this pattern, a caller would expect to be able to call g_initable_init() on the result of g_object_new(), regardless of whether it is in fact a new instance.
optional #GCancellable object, %NULL to ignore.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
Resets all internal state in the converter, making it behave as if it was just created. If the converter has any internal state that would produce output then that output is lost.
This function essentially limits the life time of the closure
to
the life time of the object. That is, when the object is finalized,
the closure
is invalidated by calling g_closure_invalidate() on
it, in order to prevent invocations of the closure with a finalized
(nonexisting) object. Also, g_object_ref() and g_object_unref() are
added as marshal guards to the closure,
to ensure that an extra
reference count is held on object
during invocation of the
closure
. Usually, this function will be called on closures that
use this object
as closure data.
#GClosure to watch
Find the #GParamSpec with the given name for an
interface. Generally, the interface vtable passed in as g_iface
will be the default vtable from g_type_default_interface_ref(), or,
if you know the interface has already been loaded,
g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
name of a property to look up.
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
This function is meant to be called from the interface's default
vtable initialization function (the class_init
member of
#GTypeInfo.) It must not be called after after class_init
has
been called for any object types implementing this interface.
If pspec
is a floating reference, it will be consumed.
any interface vtable for the interface, or the default vtable for the interface.
the #GParamSpec for the new property
Lists the properties of an interface.Generally, the interface
vtable passed in as g_iface
will be the default vtable from
g_type_default_interface_ref(), or, if you know the interface has
already been loaded, g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
Creates a new #GCharsetConverter.
destination charset
source charset
Creates a new instance of a #GObject subtype and sets its properties.
Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.
the type id of the #GObject subtype to instantiate
an array of #GParameter
#GCharsetConverter is an implementation of #GConverter based on GIConv.