Creates a new #GMenuItem.
If label
is non-%NULL it is used to set the "label" attribute of the
new item.
If detailed_action
is non-%NULL it is used to set the "action" and
possibly the "target" attribute of the new item. See
g_menu_item_set_detailed_action() for more information.
the section label, or %NULL
the detailed action string, or %NULL
Creates a binding between source_property
on source
and target_property
on target
.
Whenever the source_property
is changed the target_property
is
updated using the same value. For instance:
g_object_bind_property (action, "active", widget, "sensitive", 0);
Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.
If flags
contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
if target_property
on target
changes then the source_property
on source
will be updated as well.
The binding will automatically be removed when either the source
or the
target
instances are finalized. To remove the binding without affecting the
source
and the target
you can just call g_object_unref() on the returned
#GBinding instance.
Removing the binding by calling g_object_unref() on it must only be done if
the binding, source
and target
are only used from a single thread and it
is clear that both source
and target
outlive the binding. Especially it
is not safe to rely on this if the binding, source
or target
can be
finalized from different threads. Keep another reference to the binding and
use g_binding_unbind() instead to be on the safe side.
A #GObject can have multiple bindings.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
Creates a binding between source_property
on source
and target_property
on target,
allowing you to set the transformation functions to be used by
the binding.
This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
a #GClosure wrapping the transformation function from the source
to the target,
or %NULL to use the default
a #GClosure wrapping the transformation function from the target
to the source,
or %NULL to use the default
This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on object
. If the freeze count is
non-zero, the emission of "notify" signals on object
is
stopped. The signals are queued until the freeze count is decreased
to zero. Duplicate notifications are squashed so that at most one
#GObject::notify signal is emitted for each property modified while the
object is frozen.
This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Queries the named attribute
on menu_item
.
If expected_type
is specified and the attribute does not have this
type, %NULL is returned. %NULL is also returned if the attribute
simply does not exist.
the attribute name to query
the expected type of the attribute
Gets a named field from the objects table of associations (see g_object_set_data()).
name of the key for that association
Queries the named link
on menu_item
.
the link name to query
Gets a property of an object.
The value
can be:
In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().
Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
the name of the property to get
return location for the property value
This function gets back user data pointers stored via g_object_set_qdata().
A #GQuark, naming the user data pointer
Gets n_properties
properties for an object
.
Obtained properties will be set to values
. All properties must be valid.
Warnings will be emitted and undefined behaviour may result if invalid
properties are passed in.
the names of each property to get
the values of each property to get
Checks whether object
has a [floating][floating-ref] reference.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
the name of a property installed on the class of object
.
Emits a "notify" signal for the property specified by pspec
on object
.
This function omits the property name lookup, hence it is faster than g_object_notify().
One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:
enum
{
PROP_0,
PROP_FOO,
PROP_LAST
};
static GParamSpec *properties[PROP_LAST];
static void
my_object_class_init (MyObjectClass *klass)
{
properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
0, 100,
50,
G_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_FOO,
properties[PROP_FOO]);
}
and then notify a change on the "foo" property with:
g_object_notify_by_pspec (self, properties[PROP_FOO]);
the #GParamSpec of a property installed on the class of object
.
Increase the reference count of object,
and possibly remove the
[floating][floating-ref] reference, if object
has a floating reference.
In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.
Since GLib 2.56, the type of object
will be propagated to the return type
under the same conditions as for g_object_ref().
Releases all references to other objects. This can be used to break reference cycles.
This function should only be called from object system implementations.
Sets or unsets the "action" and "target" attributes of menu_item
.
If action
is %NULL then both the "action" and "target" attributes
are unset (and target_value
is ignored).
If action
is non-%NULL then the "action" attribute is set. The
"target" attribute is then set to the value of target_value
if it is
non-%NULL or unset otherwise.
Normal menu items (ie: not submenu, section or other custom item types) are expected to have the "action" attribute set to identify the action that they are associated with. The state type of the action help to determine the disposition of the menu item. See #GAction and #GActionGroup for an overview of actions.
In general, clicking on the menu item will result in activation of the named action with the "target" attribute given as the parameter to the action invocation. If the "target" attribute is not set then the action is invoked with no parameter.
If the action has no state then the menu item is usually drawn as a plain menu item (ie: with no additional decoration).
If the action has a boolean state then the menu item is usually drawn as a toggle menu item (ie: with a checkmark or equivalent indication). The item should be marked as 'toggled' or 'checked' when the boolean state is %TRUE.
If the action has a string state then the menu item is usually drawn
as a radio menu item (ie: with a radio bullet or equivalent
indication). The item should be marked as 'selected' when the string
state is equal to the value of the target
property.
See g_menu_item_set_action_and_target() or g_menu_item_set_detailed_action() for two equivalent calls that are probably more convenient for most uses.
the name of the action for this item
a #GVariant to use as the action target
Sets or unsets an attribute on menu_item
.
The attribute to set or unset is specified by attribute
. This
can be one of the standard attribute names %G_MENU_ATTRIBUTE_LABEL,
%G_MENU_ATTRIBUTE_ACTION, %G_MENU_ATTRIBUTE_TARGET, or a custom
attribute name.
Attribute names are restricted to lowercase characters, numbers
and '-'. Furthermore, the names must begin with a lowercase character,
must not end with a '-', and must not contain consecutive dashes.
must consist only of lowercase ASCII characters, digits and '-'.
If value
is non-%NULL then it is used as the new value for the
attribute. If value
is %NULL then the attribute is unset. If
the value
#GVariant is floating, it is consumed.
See also g_menu_item_set_attribute() for a more convenient way to do the same.
the attribute to set
a #GVariant to use as the value, or %NULL
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
If the object already had an association with that name, the old association will be destroyed.
Internally, the key
is converted to a #GQuark using g_quark_from_string().
This means a copy of key
is kept permanently (even after object
has been
finalized) — so it is recommended to only use a small, bounded set of values
for key
in your program, to avoid the #GQuark storage growing unbounded.
name of the key
data to associate with that key
Sets the "action" and possibly the "target" attribute of menu_item
.
The format of detailed_action
is the same format parsed by
g_action_parse_detailed_name().
See g_menu_item_set_action_and_target() or g_menu_item_set_action_and_target_value() for more flexible (but slightly less convenient) alternatives.
See also g_menu_item_set_action_and_target_value() for a description of the semantics of the action and target attributes.
the "detailed" action string
Sets (or unsets) the icon on menu_item
.
This call is the same as calling g_icon_serialize() and using the result as the value to g_menu_item_set_attribute_value() for %G_MENU_ATTRIBUTE_ICON.
This API is only intended for use with "noun" menu items; things like bookmarks or applications in an "Open With" menu. Don't use it on menu items corresponding to verbs (eg: stock icons for 'Save' or 'Quit').
If icon
is %NULL then the icon is unset.
Sets or unsets the "label" attribute of menu_item
.
If label
is non-%NULL it is used as the label for the menu item. If
it is %NULL then the label attribute is unset.
the label to set, or %NULL to unset
Creates a link from menu_item
to model
if non-%NULL, or unsets it.
Links are used to establish a relationship between a particular menu item and another menu. For example, %G_MENU_LINK_SUBMENU is used to associate a submenu with a particular menu item, and %G_MENU_LINK_SECTION is used to create a section. Other types of link can be used, but there is no guarantee that clients will be able to make sense of them. Link types are restricted to lowercase characters, numbers and '-'. Furthermore, the names must begin with a lowercase character, must not end with a '-', and must not contain consecutive dashes.
type of link to establish or unset
the #GMenuModel to link to (or %NULL to unset)
Sets a property on an object.
the name of the property to set
the value
Sets or unsets the "section" link of menu_item
to section
.
The effect of having one menu appear as a section of another is
exactly as it sounds: the items from section
become a direct part of
the menu that menu_item
is added to. See g_menu_item_new_section()
for more information about what it means for a menu item to be a
section.
a #GMenuModel, or %NULL
Sets or unsets the "submenu" link of menu_item
to submenu
.
If submenu
is non-%NULL, it is linked to. If it is %NULL then the
link is unset.
The effect of having one menu appear as a submenu of another is exactly as it sounds.
a #GMenuModel, or %NULL
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
name of the key
This function gets back user data pointers stored via
g_object_set_qdata() and removes the data
from object
without invoking its destroy() function (if any was
set).
Usually, calling this function is only required to update
user data pointers with a destroy notifier, for example:
void
object_add_to_user_list (GObject *object,
const gchar *new_string)
{
// the quark, naming the object data
GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
// retrieve the old string list
GList *list = g_object_steal_qdata (object, quark_string_list);
// prepend new string
list = g_list_prepend (list, g_strdup (new_string));
// this changed 'list', so we need to set it again
g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
}
static void
free_string_list (gpointer data)
{
GList *node, *list = data;
for (node = list; node; node = node->next)
g_free (node->data);
g_list_free (list);
}
Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().
A #GQuark, naming the user data pointer
Reverts the effect of a previous call to
g_object_freeze_notify(). The freeze count is decreased on object
and when it reaches zero, queued "notify" signals are emitted.
Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.
It is an error to call this function when the freeze count is zero.
Decreases the reference count of object
. When its reference count
drops to 0, the object is finalized (i.e. its memory is freed).
If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
This function essentially limits the life time of the closure
to
the life time of the object. That is, when the object is finalized,
the closure
is invalidated by calling g_closure_invalidate() on
it, in order to prevent invocations of the closure with a finalized
(nonexisting) object. Also, g_object_ref() and g_object_unref() are
added as marshal guards to the closure,
to ensure that an extra
reference count is held on object
during invocation of the
closure
. Usually, this function will be called on closures that
use this object
as closure data.
#GClosure to watch
Find the #GParamSpec with the given name for an
interface. Generally, the interface vtable passed in as g_iface
will be the default vtable from g_type_default_interface_ref(), or,
if you know the interface has already been loaded,
g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
name of a property to look up.
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
This function is meant to be called from the interface's default
vtable initialization function (the class_init
member of
#GTypeInfo.) It must not be called after after class_init
has
been called for any object types implementing this interface.
If pspec
is a floating reference, it will be consumed.
any interface vtable for the interface, or the default vtable for the interface.
the #GParamSpec for the new property
Lists the properties of an interface.Generally, the interface
vtable passed in as g_iface
will be the default vtable from
g_type_default_interface_ref(), or, if you know the interface has
already been loaded, g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
Creates a new #GMenuItem.
If label
is non-%NULL it is used to set the "label" attribute of the
new item.
If detailed_action
is non-%NULL it is used to set the "action" and
possibly the "target" attribute of the new item. See
g_menu_item_set_detailed_action() for more information.
the section label, or %NULL
the detailed action string, or %NULL
Creates a new #GMenuItem representing a section.
This is a convenience API around g_menu_item_new() and g_menu_item_set_section().
The effect of having one menu appear as a section of another is
exactly as it sounds: the items from section
become a direct part of
the menu that menu_item
is added to.
Visual separation is typically displayed between two non-empty
sections. If label
is non-%NULL then it will be encorporated into
this visual indication. This allows for labeled subsections of a
menu.
As a simple example, consider a typical "Edit" menu from a simple program. It probably contains an "Undo" and "Redo" item, followed by a separator, followed by "Cut", "Copy" and "Paste".
This would be accomplished by creating three #GMenu instances. The first would be populated with the "Undo" and "Redo" items, and the second with the "Cut", "Copy" and "Paste" items. The first and second menus would then be added as submenus of the third. In XML format, this would look something like the following: |[
```The following example is exactly equivalent. It is more illustrative of the exact relationship between the menus and items (keeping in mind that the 'link' element defines a new menu that is linked to the containing one). The style of the second example is more verbose and difficult to read (and therefore not recommended except for the purpose of understanding what is really going on). |[
```the section label, or %NULL
a #GMenuModel with the items of the section
Creates a new instance of a #GObject subtype and sets its properties.
Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.
the type id of the #GObject subtype to instantiate
an array of #GParameter
#GMenuItem is an opaque structure type. You must access it using the functions below.