Creates a binding between source_property
on source
and target_property
on target
.
Whenever the source_property
is changed the target_property
is
updated using the same value. For instance:
g_object_bind_property (action, "active", widget, "sensitive", 0);
Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.
If flags
contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
if target_property
on target
changes then the source_property
on source
will be updated as well.
The binding will automatically be removed when either the source
or the
target
instances are finalized. To remove the binding without affecting the
source
and the target
you can just call g_object_unref() on the returned
#GBinding instance.
Removing the binding by calling g_object_unref() on it must only be done if
the binding, source
and target
are only used from a single thread and it
is clear that both source
and target
outlive the binding. Especially it
is not safe to rely on this if the binding, source
or target
can be
finalized from different threads. Keep another reference to the binding and
use g_binding_unbind() instead to be on the safe side.
A #GObject can have multiple bindings.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
Creates a binding between source_property
on source
and target_property
on target,
allowing you to set the transformation functions to be used by
the binding.
This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
a #GClosure wrapping the transformation function from the source
to the target,
or %NULL to use the default
a #GClosure wrapping the transformation function from the target
to the source,
or %NULL to use the default
This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on object
. If the freeze count is
non-zero, the emission of "notify" signals on object
is
stopped. The signals are queued until the freeze count is decreased
to zero. Duplicate notifications are squashed so that at most one
#GObject::notify signal is emitted for each property modified while the
object is frozen.
This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Gets a named field from the objects table of associations (see g_object_set_data()).
name of the key for that association
Gets a property of an object.
The value
can be:
In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().
Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
the name of the property to get
return location for the property value
This function gets back user data pointers stored via g_object_set_qdata().
A #GQuark, naming the user data pointer
Gets n_properties
properties for an object
.
Obtained properties will be set to values
. All properties must be valid.
Warnings will be emitted and undefined behaviour may result if invalid
properties are passed in.
the names of each property to get
the values of each property to get
Checks whether object
has a [floating][floating-ref] reference.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
the name of a property installed on the class of object
.
Emits a "notify" signal for the property specified by pspec
on object
.
This function omits the property name lookup, hence it is faster than g_object_notify().
One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:
enum
{
PROP_0,
PROP_FOO,
PROP_LAST
};
static GParamSpec *properties[PROP_LAST];
static void
my_object_class_init (MyObjectClass *klass)
{
properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
0, 100,
50,
G_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_FOO,
properties[PROP_FOO]);
}
and then notify a change on the "foo" property with:
g_object_notify_by_pspec (self, properties[PROP_FOO]);
the #GParamSpec of a property installed on the class of object
.
Increase the reference count of object,
and possibly remove the
[floating][floating-ref] reference, if object
has a floating reference.
In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.
Since GLib 2.56, the type of object
will be propagated to the return type
under the same conditions as for g_object_ref().
Releases all references to other objects. This can be used to break reference cycles.
This function should only be called from object system implementations.
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
If the object already had an association with that name, the old association will be destroyed.
Internally, the key
is converted to a #GQuark using g_quark_from_string().
This means a copy of key
is kept permanently (even after object
has been
finalized) — so it is recommended to only use a small, bounded set of values
for key
in your program, to avoid the #GQuark storage growing unbounded.
name of the key
data to associate with that key
Sets a property on an object.
the name of the property to set
the value
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
name of the key
This function gets back user data pointers stored via
g_object_set_qdata() and removes the data
from object
without invoking its destroy() function (if any was
set).
Usually, calling this function is only required to update
user data pointers with a destroy notifier, for example:
void
object_add_to_user_list (GObject *object,
const gchar *new_string)
{
// the quark, naming the object data
GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
// retrieve the old string list
GList *list = g_object_steal_qdata (object, quark_string_list);
// prepend new string
list = g_list_prepend (list, g_strdup (new_string));
// this changed 'list', so we need to set it again
g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
}
static void
free_string_list (gpointer data)
{
GList *node, *list = data;
for (node = list; node; node = node->next)
g_free (node->data);
g_list_free (list);
}
Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().
A #GQuark, naming the user data pointer
Reverts the effect of a previous call to
g_object_freeze_notify(). The freeze count is decreased on object
and when it reaches zero, queued "notify" signals are emitted.
Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.
It is an error to call this function when the freeze count is zero.
Decreases the reference count of object
. When its reference count
drops to 0, the object is finalized (i.e. its memory is freed).
If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
This function essentially limits the life time of the closure
to
the life time of the object. That is, when the object is finalized,
the closure
is invalidated by calling g_closure_invalidate() on
it, in order to prevent invocations of the closure with a finalized
(nonexisting) object. Also, g_object_ref() and g_object_unref() are
added as marshal guards to the closure,
to ensure that an extra
reference count is held on object
during invocation of the
closure
. Usually, this function will be called on closures that
use this object
as closure data.
#GClosure to watch
Registers a new accelerator with the global accelerator map.
This function should only be called once per accel_path
with the canonical accel_key
and accel_mods
for this path.
To change the accelerator during runtime programatically, use
gtk_accel_map_change_entry().
Set accel_key
and accel_mods
to 0 to request a removal of
the accelerator.
Note that accel_path
string will be stored in a #GQuark. Therefore, if you
pass a static string, you can save some memory by interning it first with
g_intern_static_string().
valid accelerator path
the accelerator key
the accelerator modifiers
Adds a filter to the global list of accel path filters.
Accel map entries whose accel path matches one of the filters are skipped by gtk_accel_map_foreach().
This function is intended for GTK+ modules that create their own menus, but don’t want them to be saved into the applications accelerator map dump.
a pattern (see #GPatternSpec)
Changes the accel_key
and accel_mods
currently associated with accel_path
.
Due to conflicts with other accelerators, a change may not always be possible,
replace
indicates whether other accelerators may be deleted to resolve such
conflicts. A change will only occur if all conflicts could be resolved (which
might not be the case if conflicting accelerators are locked). Successful
changes are indicated by a %TRUE return value.
Note that accel_path
string will be stored in a #GQuark. Therefore, if you
pass a static string, you can save some memory by interning it first with
g_intern_static_string().
a valid accelerator path
the new accelerator key
the new accelerator modifiers
%TRUE if other accelerators may be deleted upon conflicts
Loops over the entries in the accelerator map whose accel path
doesn’t match any of the filters added with gtk_accel_map_add_filter(),
and execute foreach_func
on each. The signature of foreach_func
is
that of #GtkAccelMapForeach, the changed
parameter indicates whether
this accelerator was changed during runtime (thus, would need
saving during an accelerator map dump).
data to be passed into foreach_func
function to be executed for each accel map entry which is not filtered out
Loops over all entries in the accelerator map, and execute
foreach_func
on each. The signature of foreach_func
is that of
#GtkAccelMapForeach, the changed
parameter indicates whether
this accelerator was changed during runtime (thus, would need
saving during an accelerator map dump).
data to be passed into foreach_func
function to be executed for each accel map entry
Find the #GParamSpec with the given name for an
interface. Generally, the interface vtable passed in as g_iface
will be the default vtable from g_type_default_interface_ref(), or,
if you know the interface has already been loaded,
g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
name of a property to look up.
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
This function is meant to be called from the interface's default
vtable initialization function (the class_init
member of
#GTypeInfo.) It must not be called after after class_init
has
been called for any object types implementing this interface.
If pspec
is a floating reference, it will be consumed.
any interface vtable for the interface, or the default vtable for the interface.
the #GParamSpec for the new property
Lists the properties of an interface.Generally, the interface
vtable passed in as g_iface
will be the default vtable from
g_type_default_interface_ref(), or, if you know the interface has
already been loaded, g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
Parses a file previously saved with gtk_accel_map_save() for accelerator specifications, and propagates them accordingly.
a file containing accelerator specifications, in the GLib file name encoding
Filedescriptor variant of gtk_accel_map_load().
Note that the file descriptor will not be closed by this function.
a valid readable file descriptor
Locks the given accelerator path. If the accelerator map doesn’t yet contain
an entry for accel_path,
a new one is created.
Locking an accelerator path prevents its accelerator from being changed during runtime. A locked accelerator path can be unlocked by gtk_accel_map_unlock_path(). Refer to gtk_accel_map_change_entry() for information about runtime accelerator changes.
If called more than once, accel_path
remains locked until
gtk_accel_map_unlock_path() has been called an equivalent number
of times.
Note that locking of individual accelerator paths is independent from locking the #GtkAccelGroup containing them. For runtime accelerator changes to be possible, both the accelerator path and its #GtkAccelGroup have to be unlocked.
a valid accelerator path
Creates a new instance of a #GObject subtype and sets its properties.
Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.
the type id of the #GObject subtype to instantiate
an array of #GParameter
Saves current accelerator specifications (accelerator path, key
and modifiers) to file_name
.
The file is written in a format suitable to be read back in by
gtk_accel_map_load().
the name of the file to contain accelerator specifications, in the GLib file name encoding
Filedescriptor variant of gtk_accel_map_save().
Note that the file descriptor will not be closed by this function.
a valid writable file descriptor
Undoes the last call to gtk_accel_map_lock_path() on this accel_path
.
Refer to gtk_accel_map_lock_path() for information about accelerator path locking.
a valid accelerator path
Accelerator maps are used to define runtime configurable accelerators. Functions for manipulating them are are usually used by higher level convenience mechanisms like #GtkUIManager and are thus considered “low-level”. You’ll want to use them if you’re manually creating menus that should have user-configurable accelerators.
An accelerator is uniquely defined by:
The accelerator path must consist of “/Category1/Category2/.../Action”, where WINDOWTYPE
should be a unique application-specific identifier that corresponds
to the kind of window the accelerator is being used in, e.g.
“Gimp-Image”, “Abiword-Document” or “Gnumeric-Settings”.
The “Category1/.../Action” portion is most appropriately chosen by
the action the accelerator triggers, i.e. for accelerators on menu
items, choose the item’s menu path, e.g. “File/Save As”,
“Image/View/Zoom” or “Edit/Select All”. So a full valid accelerator
path may look like: “/File/Dialogs/Tool Options...”.
All accelerators are stored inside one global #GtkAccelMap that can be obtained using gtk_accel_map_get(). See [Monitoring changes][monitoring-changes] for additional details.
Manipulating accelerators
New accelerators can be added using gtk_accel_map_add_entry(). To search for specific accelerator, use gtk_accel_map_lookup_entry(). Modifications of existing accelerators should be done using gtk_accel_map_change_entry().
In order to avoid having some accelerators changed, they can be locked using gtk_accel_map_lock_path(). Unlocking is done using gtk_accel_map_unlock_path().
Saving and loading accelerator maps
Accelerator maps can be saved to and loaded from some external resource. For simple saving and loading from file, gtk_accel_map_save() and gtk_accel_map_load() are provided. Saving and loading can also be done by providing file descriptor to gtk_accel_map_save_fd() and gtk_accel_map_load_fd().
Monitoring changes
#GtkAccelMap object is only useful for monitoring changes of accelerators. By connecting to #GtkAccelMap::changed signal, one can monitor changes of all accelerators. It is also possible to monitor only single accelerator path by using it as a detail of the #GtkAccelMap::changed signal.