A bitfield of %NMSecretAgentCapabilities.
Changing this property is possible at any time. In case the secret agent is currently registered, this will cause a re-registration.
The #GDBusConnection used by the instance. You may either set this as construct-only property, or otherwise #NMSecretAgentOld will choose a connection via g_bus_get() during initialization.
Identifies this agent; only one agent in each user session may use the same identifier. Identifier formatting follows the same rules as D-Bus bus names with the exception that the ':' character is not allowed. The valid set of characters is "[A-Z][a-z][0-9]_-." and the identifier is limited in length to 255 characters with a minimum of 3 characters. An example valid identifier is 'org.gnome.nm-applet' (without quotes).
%TRUE if the agent is registered with NetworkManager, %FALSE if not.
Creates a binding between source_property
on source
and target_property
on target
.
Whenever the source_property
is changed the target_property
is
updated using the same value. For instance:
g_object_bind_property (action, "active", widget, "sensitive", 0);
Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.
If flags
contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
if target_property
on target
changes then the source_property
on source
will be updated as well.
The binding will automatically be removed when either the source
or the
target
instances are finalized. To remove the binding without affecting the
source
and the target
you can just call g_object_unref() on the returned
#GBinding instance.
Removing the binding by calling g_object_unref() on it must only be done if
the binding, source
and target
are only used from a single thread and it
is clear that both source
and target
outlive the binding. Especially it
is not safe to rely on this if the binding, source
or target
can be
finalized from different threads. Keep another reference to the binding and
use g_binding_unbind() instead to be on the safe side.
A #GObject can have multiple bindings.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
Creates a binding between source_property
on source
and target_property
on target,
allowing you to set the transformation functions to be used by
the binding.
This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
a #GClosure wrapping the transformation function from the source
to the target,
or %NULL to use the default
a #GClosure wrapping the transformation function from the target
to the source,
or %NULL to use the default
Asynchronously asks the agent to delete all saved secrets belonging to
connection
.
a #NMConnection
a callback, to be invoked when the operation is done
Since 1.24, the instance will already register a D-Bus object on the
D-Bus connection during initialization. That object will stay registered
until self
gets unrefed (destroyed) or this function is called. This
function performs the necessary cleanup to tear down the instance. Afterwards,
the function can not longer be used. This is optional, but necessary to
ensure unregistering the D-Bus object at a define point, when other users
might still have a reference on self
.
You may call this function any time and repeatedly. However, after destroying the instance, it is a bug to still use the instance for other purposes. The instance becomes defunct and cannot re-register.
This has the same effect as setting %NM_SECRET_AGENT_OLD_AUTO_REGISTER property.
Unlike most other functions, you may already call this function before initialization completes.
whether to enable or disable the listener.
This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on object
. If the freeze count is
non-zero, the emission of "notify" signals on object
is
stopped. The signals are queued until the freeze count is decreased
to zero. Duplicate notifications are squashed so that at most one
#GObject::notify signal is emitted for each property modified while the
object is frozen.
This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Returns a #GObject that stays alive as long as there are pending requests in the #GDBusConnection. Such requests keep the #GMainContext alive, and thus you may want to keep iterating the context as long until a weak reference indicates that this object is gone. This is useful because even when you destroy the instance right away (and all the internally pending requests get cancelled), any pending g_dbus_connection_call() requests will still invoke the result on the #GMainContext. Hence, this allows you to know how long you must iterate the context to know that all remains are cleaned up.
Gets a named field from the objects table of associations (see g_object_set_data()).
name of the key for that association
Gets a property of an object.
The value
can be:
In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().
Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
the name of the property to get
return location for the property value
This function gets back user data pointers stored via g_object_set_qdata().
A #GQuark, naming the user data pointer
Note that the secret agent transparently registers and re-registers
as the D-Bus name owner appears. Hence, this property is not really
useful. Also, to be graceful against races during registration, the
instance will already accept requests while being in the process of
registering.
If you need to avoid races and want to wait until self
is registered,
call nm_secret_agent_old_register_async(). If that function completes
with success, you know the instance is registered.
Asynchronously retrieves secrets belonging to connection
for the
setting setting_name
. flags
indicate specific behavior that the secret
agent should use when performing the request, for example returning only
existing secrets without user interaction, or requesting entirely new
secrets from the user.
the #NMConnection for which we're asked secrets
the name of the secret setting
hints to the agent
flags that modify the behavior of the request
a callback, to be invoked when the operation is done
Gets n_properties
properties for an object
.
Obtained properties will be set to values
. All properties must be valid.
Warnings will be emitted and undefined behaviour may result if invalid
properties are passed in.
the names of each property to get
the values of each property to get
Initializes the object implementing the interface.
This method is intended for language bindings. If writing in C, g_initable_new() should typically be used instead.
The object must be initialized before any real use after initial construction, either with this function or g_async_initable_init_async().
Implementations may also support cancellation. If cancellable
is not %NULL,
then initialization can be cancelled by triggering the cancellable object
from another thread. If the operation was cancelled, the error
%G_IO_ERROR_CANCELLED will be returned. If cancellable
is not %NULL and
the object doesn't support cancellable initialization the error
%G_IO_ERROR_NOT_SUPPORTED will be returned.
If the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. See the [introduction][ginitable] for more details.
Callers should not assume that a class which implements #GInitable can be initialized multiple times, unless the class explicitly documents itself as supporting this. Generally, a class’ implementation of init() can assume (and assert) that it will only be called once. Previously, this documentation recommended all #GInitable implementations should be idempotent; that recommendation was relaxed in GLib 2.54.
If a class explicitly supports being initialized multiple times, it is recommended that the method is idempotent: multiple calls with the same arguments should return the same results. Only the first call initializes the object; further calls return the result of the first call.
One reason why a class might need to support idempotent initialization is if it is designed to be used via the singleton pattern, with a #GObjectClass.constructor that sometimes returns an existing instance. In this pattern, a caller would expect to be able to call g_initable_init() on the result of g_object_new(), regardless of whether it is in fact a new instance.
optional #GCancellable object, %NULL to ignore.
Starts asynchronous initialization of the object implementing the interface. This must be done before any real use of the object after initial construction. If the object also implements #GInitable you can optionally call g_initable_init() instead.
This method is intended for language bindings. If writing in C, g_async_initable_new_async() should typically be used instead.
When the initialization is finished, callback
will be called. You can
then call g_async_initable_init_finish() to get the result of the
initialization.
Implementations may also support cancellation. If cancellable
is not
%NULL, then initialization can be cancelled by triggering the cancellable
object from another thread. If the operation was cancelled, the error
%G_IO_ERROR_CANCELLED will be returned. If cancellable
is not %NULL, and
the object doesn't support cancellable initialization, the error
%G_IO_ERROR_NOT_SUPPORTED will be returned.
As with #GInitable, if the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. They will often fail with g_critical() or g_warning(), but this must not be relied on.
Callers should not assume that a class which implements #GAsyncInitable can be initialized multiple times; for more information, see g_initable_init(). If a class explicitly supports being initialized multiple times, implementation requires yielding all subsequent calls to init_async() on the results of the first call.
For classes that also support the #GInitable interface, the default implementation of this method will run the g_initable_init() function in a thread, so if you want to support asynchronous initialization via threads, just implement the #GAsyncInitable interface without overriding any interface methods.
the [I/O priority][io-priority] of the operation
optional #GCancellable object, %NULL to ignore.
a #GAsyncReadyCallback to call when the request is satisfied
Finishes asynchronous initialization and returns the result. See g_async_initable_init_async().
a #GAsyncResult.
Checks whether object
has a [floating][floating-ref] reference.
Finishes the async construction for the various g_async_initable_new calls, returning the created object or %NULL on error.
the #GAsyncResult from the callback
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
the name of a property installed on the class of object
.
Emits a "notify" signal for the property specified by pspec
on object
.
This function omits the property name lookup, hence it is faster than g_object_notify().
One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:
enum
{
PROP_0,
PROP_FOO,
PROP_LAST
};
static GParamSpec *properties[PROP_LAST];
static void
my_object_class_init (MyObjectClass *klass)
{
properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
0, 100,
50,
G_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_FOO,
properties[PROP_FOO]);
}
and then notify a change on the "foo" property with:
g_object_notify_by_pspec (self, properties[PROP_FOO]);
the #GParamSpec of a property installed on the class of object
.
Increase the reference count of object,
and possibly remove the
[floating][floating-ref] reference, if object
has a floating reference.
In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.
Since GLib 2.56, the type of object
will be propagated to the return type
under the same conditions as for g_object_ref().
Registers the #NMSecretAgentOld with the NetworkManager secret manager, indicating to NetworkManager that the agent is able to provide and save secrets for connections on behalf of its user.
a #GCancellable, or %NULL
Asynchronously registers the #NMSecretAgentOld with the NetworkManager secret manager, indicating to NetworkManager that the agent is able to provide and save secrets for connections on behalf of its user.
Since 1.24, registration cannot fail and is idempotent. It has the same effect as setting %NM_SECRET_AGENT_OLD_AUTO_REGISTER to %TRUE or nm_secret_agent_old_enable().
Since 1.24, the asynchronous result indicates whether the instance is successfully registered. In any case, this call enables the agent and it will automatically try to register and handle secret requests. A failure of this function only indicates that currently the instance might not be ready (but since it will automatically try to recover, it might be ready in a moment afterwards). Use this function if you want to check and ensure that the agent is registered.
a #GCancellable, or %NULL
callback to call when the agent is registered
Gets the result of a call to nm_secret_agent_old_register_async().
the result passed to the #GAsyncReadyCallback
Releases all references to other objects. This can be used to break reference cycles.
This function should only be called from object system implementations.
Asynchronously ensures that all secrets inside connection
are stored to
disk.
a #NMConnection
a callback, to be invoked when the operation is done
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
If the object already had an association with that name, the old association will be destroyed.
Internally, the key
is converted to a #GQuark using g_quark_from_string().
This means a copy of key
is kept permanently (even after object
has been
finalized) — so it is recommended to only use a small, bounded set of values
for key
in your program, to avoid the #GQuark storage growing unbounded.
name of the key
data to associate with that key
Sets a property on an object.
the name of the property to set
the value
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
name of the key
This function gets back user data pointers stored via
g_object_set_qdata() and removes the data
from object
without invoking its destroy() function (if any was
set).
Usually, calling this function is only required to update
user data pointers with a destroy notifier, for example:
void
object_add_to_user_list (GObject *object,
const gchar *new_string)
{
// the quark, naming the object data
GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
// retrieve the old string list
GList *list = g_object_steal_qdata (object, quark_string_list);
// prepend new string
list = g_list_prepend (list, g_strdup (new_string));
// this changed 'list', so we need to set it again
g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
}
static void
free_string_list (gpointer data)
{
GList *node, *list = data;
for (node = list; node; node = node->next)
g_free (node->data);
g_list_free (list);
}
Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().
A #GQuark, naming the user data pointer
Reverts the effect of a previous call to
g_object_freeze_notify(). The freeze count is decreased on object
and when it reaches zero, queued "notify" signals are emitted.
Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.
It is an error to call this function when the freeze count is zero.
Decreases the reference count of object
. When its reference count
drops to 0, the object is finalized (i.e. its memory is freed).
If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.
Unregisters the #NMSecretAgentOld with the NetworkManager secret manager, indicating to NetworkManager that the agent will no longer provide or store secrets on behalf of this user.
a #GCancellable, or %NULL
Asynchronously unregisters the #NMSecretAgentOld with the NetworkManager secret manager, indicating to NetworkManager that the agent will no longer provide or store secrets on behalf of this user.
Since 1.24, registration cannot fail and is idempotent. It has the same effect as setting %NM_SECRET_AGENT_OLD_AUTO_REGISTER to %FALSE or nm_secret_agent_old_enable().
a #GCancellable, or %NULL
callback to call when the agent is unregistered
Gets the result of a call to nm_secret_agent_old_unregister_async().
the result passed to the #GAsyncReadyCallback
Asynchronously asks the agent to delete all saved secrets belonging to
connection
.
a #NMConnection
a callback, to be invoked when the operation is done
Asynchronously retrieves secrets belonging to connection
for the
setting setting_name
. flags
indicate specific behavior that the secret
agent should use when performing the request, for example returning only
existing secrets without user interaction, or requesting entirely new
secrets from the user.
the #NMConnection for which we're asked secrets
the name of the secret setting
hints to the agent
flags that modify the behavior of the request
a callback, to be invoked when the operation is done
Initializes the object implementing the interface.
This method is intended for language bindings. If writing in C, g_initable_new() should typically be used instead.
The object must be initialized before any real use after initial construction, either with this function or g_async_initable_init_async().
Implementations may also support cancellation. If cancellable
is not %NULL,
then initialization can be cancelled by triggering the cancellable object
from another thread. If the operation was cancelled, the error
%G_IO_ERROR_CANCELLED will be returned. If cancellable
is not %NULL and
the object doesn't support cancellable initialization the error
%G_IO_ERROR_NOT_SUPPORTED will be returned.
If the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. See the [introduction][ginitable] for more details.
Callers should not assume that a class which implements #GInitable can be initialized multiple times, unless the class explicitly documents itself as supporting this. Generally, a class’ implementation of init() can assume (and assert) that it will only be called once. Previously, this documentation recommended all #GInitable implementations should be idempotent; that recommendation was relaxed in GLib 2.54.
If a class explicitly supports being initialized multiple times, it is recommended that the method is idempotent: multiple calls with the same arguments should return the same results. Only the first call initializes the object; further calls return the result of the first call.
One reason why a class might need to support idempotent initialization is if it is designed to be used via the singleton pattern, with a #GObjectClass.constructor that sometimes returns an existing instance. In this pattern, a caller would expect to be able to call g_initable_init() on the result of g_object_new(), regardless of whether it is in fact a new instance.
optional #GCancellable object, %NULL to ignore.
Starts asynchronous initialization of the object implementing the interface. This must be done before any real use of the object after initial construction. If the object also implements #GInitable you can optionally call g_initable_init() instead.
This method is intended for language bindings. If writing in C, g_async_initable_new_async() should typically be used instead.
When the initialization is finished, callback
will be called. You can
then call g_async_initable_init_finish() to get the result of the
initialization.
Implementations may also support cancellation. If cancellable
is not
%NULL, then initialization can be cancelled by triggering the cancellable
object from another thread. If the operation was cancelled, the error
%G_IO_ERROR_CANCELLED will be returned. If cancellable
is not %NULL, and
the object doesn't support cancellable initialization, the error
%G_IO_ERROR_NOT_SUPPORTED will be returned.
As with #GInitable, if the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. They will often fail with g_critical() or g_warning(), but this must not be relied on.
Callers should not assume that a class which implements #GAsyncInitable can be initialized multiple times; for more information, see g_initable_init(). If a class explicitly supports being initialized multiple times, implementation requires yielding all subsequent calls to init_async() on the results of the first call.
For classes that also support the #GInitable interface, the default implementation of this method will run the g_initable_init() function in a thread, so if you want to support asynchronous initialization via threads, just implement the #GAsyncInitable interface without overriding any interface methods.
the [I/O priority][io-priority] of the operation
optional #GCancellable object, %NULL to ignore.
a #GAsyncReadyCallback to call when the request is satisfied
Finishes asynchronous initialization and returns the result. See g_async_initable_init_async().
a #GAsyncResult.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
Asynchronously ensures that all secrets inside connection
are stored to
disk.
a #NMConnection
a callback, to be invoked when the operation is done
This function essentially limits the life time of the closure
to
the life time of the object. That is, when the object is finalized,
the closure
is invalidated by calling g_closure_invalidate() on
it, in order to prevent invocations of the closure with a finalized
(nonexisting) object. Also, g_object_ref() and g_object_unref() are
added as marshal guards to the closure,
to ensure that an extra
reference count is held on object
during invocation of the
closure
. Usually, this function will be called on closures that
use this object
as closure data.
#GClosure to watch
Find the #GParamSpec with the given name for an
interface. Generally, the interface vtable passed in as g_iface
will be the default vtable from g_type_default_interface_ref(), or,
if you know the interface has already been loaded,
g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
name of a property to look up.
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
This function is meant to be called from the interface's default
vtable initialization function (the class_init
member of
#GTypeInfo.) It must not be called after after class_init
has
been called for any object types implementing this interface.
If pspec
is a floating reference, it will be consumed.
any interface vtable for the interface, or the default vtable for the interface.
the #GParamSpec for the new property
Lists the properties of an interface.Generally, the interface
vtable passed in as g_iface
will be the default vtable from
g_type_default_interface_ref(), or, if you know the interface has
already been loaded, g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
Creates a new instance of a #GObject subtype and sets its properties.
Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.
the type id of the #GObject subtype to instantiate
an array of #GParameter
If %TRUE (the default), the agent will always be registered when NetworkManager is running; if NetworkManager exits and restarts, the agent will re-register itself automatically.
In particular, if this property is %TRUE at construct time, then the agent will register itself with NetworkManager during construction/initialization and initialization will only complete after registration is completed (either successfully or unsuccessfully). Since 1.24, a failure to register will no longer cause initialization of #NMSecretAgentOld to fail.
If the property is %FALSE, the agent will not automatically register with NetworkManager, and nm_secret_agent_old_enable() or nm_secret_agent_old_register_async() must be called to register it.
Calling nm_secret_agent_old_enable() has the same effect as setting this property.