Gjsify LogoGjsify Logo

PangoRenderer is a base class for objects that can render text provided as PangoGlyphString or PangoLayout.

By subclassing PangoRenderer and overriding operations such as draw_glyphs and draw_rectangle, renderers for particular font backends and destinations can be created.

Hierarchy

Index

Constructors

Properties

g_type_instance: TypeInstance
matrix: Pango.Matrix

the current transformation matrix for the Renderer; may be %NULL, which should be treated the same as the identity matrix.

field
name: string

Methods

  • activate(): void
  • Does initial setup before rendering operations on renderer.

    [methodPango.Renderer.deactivate] should be called when done drawing. Calls such as [methodPango.Renderer.draw_layout] automatically activate the layout before drawing on it.

    Calls to [methodPango.Renderer.activate] and [methodPango.Renderer.deactivate] can be nested and the renderer will only be initialized and deinitialized once.

    Returns void

  • Creates a binding between source_property on source and target_property on target.

    Whenever the source_property is changed the target_property is updated using the same value. For instance:

      g_object_bind_property (action, "active", widget, "sensitive", 0);
    

    Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.

    If flags contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual: if target_property on target changes then the source_property on source will be updated as well.

    The binding will automatically be removed when either the source or the target instances are finalized. To remove the binding without affecting the source and the target you can just call g_object_unref() on the returned #GBinding instance.

    Removing the binding by calling g_object_unref() on it must only be done if the binding, source and target are only used from a single thread and it is clear that both source and target outlive the binding. Especially it is not safe to rely on this if the binding, source or target can be finalized from different threads. Keep another reference to the binding and use g_binding_unbind() instead to be on the safe side.

    A #GObject can have multiple bindings.

    Parameters

    • source_property: string

      the property on source to bind

    • target: GObject.Object

      the target #GObject

    • target_property: string

      the property on target to bind

    • flags: BindingFlags

      flags to pass to #GBinding

    Returns Binding

  • Creates a binding between source_property on source and target_property on target, allowing you to set the transformation functions to be used by the binding.

    This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.

    Parameters

    • source_property: string

      the property on source to bind

    • target: GObject.Object

      the target #GObject

    • target_property: string

      the property on target to bind

    • flags: BindingFlags

      flags to pass to #GBinding

    • transform_to: TClosure<any, any>

      a #GClosure wrapping the transformation function from the source to the target, or %NULL to use the default

    • transform_from: TClosure<any, any>

      a #GClosure wrapping the transformation function from the target to the source, or %NULL to use the default

    Returns Binding

  • connect(sigName: string, callback: ((...args: any[]) => void)): number
  • connect_after(sigName: string, callback: ((...args: any[]) => void)): number
  • deactivate(): void
  • Cleans up after rendering operations on renderer.

    See docs for [methodPango.Renderer.activate].

    Returns void

  • disconnect(id: number): void
  • draw_error_underline(x: number, y: number, width: number, height: number): void
  • Draw a squiggly line that approximately covers the given rectangle in the style of an underline used to indicate a spelling error.

    The width of the underline is rounded to an integer number of up/down segments and the resulting rectangle is centered in the original rectangle.

    This should be called while renderer is already active. Use [methodPango.Renderer.activate] to activate a renderer.

    Parameters

    • x: number

      X coordinate of underline, in Pango units in user coordinate system

    • y: number

      Y coordinate of underline, in Pango units in user coordinate system

    • width: number

      width of underline, in Pango units in user coordinate system

    • height: number

      height of underline, in Pango units in user coordinate system

    Returns void

  • draw_glyph(font: Pango.Font, glyph: number, x: number, y: number): void
  • Draws a single glyph with coordinates in device space.

    Parameters

    • font: Pango.Font

      a PangoFont

    • glyph: number

      the glyph index of a single glyph

    • x: number

      X coordinate of left edge of baseline of glyph

    • y: number

      Y coordinate of left edge of baseline of glyph

    Returns void

  • draw_glyph_item(text: string, glyph_item: GlyphItem, x: number, y: number): void
  • Draws the glyphs in glyph_item with the specified PangoRenderer, embedding the text associated with the glyphs in the output if the output format supports it.

    This is useful for rendering text in PDF.

    Note that this method does not handle attributes in glyph_item. If you want colors, shapes and lines handled automatically according to those attributes, you need to use pango_renderer_draw_layout_line() or pango_renderer_draw_layout().

    Note that text is the start of the text for layout, which is then indexed by glyph_item->item->offset.

    If text is %NULL, this simply calls [methodPango.Renderer.draw_glyphs].

    The default implementation of this method simply falls back to [methodPango.Renderer.draw_glyphs].

    Parameters

    • text: string

      the UTF-8 text that glyph_item refers to

    • glyph_item: GlyphItem

      a PangoGlyphItem

    • x: number

      X position of left edge of baseline, in user space coordinates in Pango units

    • y: number

      Y position of left edge of baseline, in user space coordinates in Pango units

    Returns void

  • Draws the glyphs in glyphs with the specified PangoRenderer.

    Parameters

    • font: Pango.Font

      a PangoFont

    • glyphs: GlyphString

      a PangoGlyphString

    • x: number

      X position of left edge of baseline, in user space coordinates in Pango units.

    • y: number

      Y position of left edge of baseline, in user space coordinates in Pango units.

    Returns void

  • draw_layout(layout: Pango.Layout, x: number, y: number): void
  • Draws layout with the specified PangoRenderer.

    This is equivalent to drawing the lines of the layout, at their respective positions relative to x, y.

    Parameters

    • layout: Pango.Layout

      a PangoLayout

    • x: number

      X position of left edge of baseline, in user space coordinates in Pango units.

    • y: number

      Y position of left edge of baseline, in user space coordinates in Pango units.

    Returns void

  • draw_layout_line(line: LayoutLine, x: number, y: number): void
  • Draws line with the specified PangoRenderer.

    This draws the glyph items that make up the line, as well as shapes, backgrounds and lines that are specified by the attributes of those items.

    Parameters

    • line: LayoutLine

      a PangoLayoutLine

    • x: number

      X position of left edge of baseline, in user space coordinates in Pango units.

    • y: number

      Y position of left edge of baseline, in user space coordinates in Pango units.

    Returns void

  • draw_rectangle(part: RenderPart, x: number, y: number, width: number, height: number): void
  • Draws an axis-aligned rectangle in user space coordinates with the specified PangoRenderer.

    This should be called while renderer is already active. Use [methodPango.Renderer.activate] to activate a renderer.

    Parameters

    • part: RenderPart

      type of object this rectangle is part of

    • x: number

      X position at which to draw rectangle, in user space coordinates in Pango units

    • y: number

      Y position at which to draw rectangle, in user space coordinates in Pango units

    • width: number

      width of rectangle in Pango units

    • height: number

      height of rectangle in Pango units

    Returns void

  • draw_trapezoid(part: RenderPart, y1_: number, x11: number, x21: number, y2: number, x12: number, x22: number): void
  • Draws a trapezoid with the parallel sides aligned with the X axis using the given PangoRenderer; coordinates are in device space.

    Parameters

    • part: RenderPart

      type of object this trapezoid is part of

    • y1_: number

      Y coordinate of top of trapezoid

    • x11: number

      X coordinate of left end of top of trapezoid

    • x21: number

      X coordinate of right end of top of trapezoid

    • y2: number

      Y coordinate of bottom of trapezoid

    • x12: number

      X coordinate of left end of bottom of trapezoid

    • x22: number

      X coordinate of right end of bottom of trapezoid

    Returns void

  • emit(sigName: string, ...args: any[]): void
  • force_floating(): void
  • This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().

    Returns void

  • freeze_notify(): void
  • Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.

    This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.

    Returns void

  • get_data(key?: string): object
  • Gets a named field from the objects table of associations (see g_object_set_data()).

    Parameters

    • Optional key: string

      name of the key for that association

    Returns object

  • Gets the layout currently being rendered using renderer.

    Calling this function only makes sense from inside a subclass's methods, like in its draw_shape vfunc, for example.

    The returned layout should not be modified while still being rendered.

    Returns Pango.Layout

  • Gets the layout line currently being rendered using renderer.

    Calling this function only makes sense from inside a subclass's methods, like in its draw_shape vfunc, for example.

    The returned layout line should not be modified while still being rendered.

    Returns LayoutLine

  • get_property(property_name?: string, value?: any): void
  • Gets a property of an object.

    The value can be:

    • an empty #GValue initialized by %G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
    • a #GValue initialized with the expected type of the property
    • a #GValue initialized with a type to which the expected type of the property can be transformed

    In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().

    Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.

    Parameters

    • Optional property_name: string

      the name of the property to get

    • Optional value: any

      return location for the property value

    Returns void

  • get_qdata(quark: number): object
  • getv(names: string[], values: any[]): void
  • Gets n_properties properties for an object. Obtained properties will be set to values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.

    Parameters

    • names: string[]

      the names of each property to get

    • values: any[]

      the values of each property to get

    Returns void

  • is_floating(): boolean
  • notify(property_name: string): void
  • Emits a "notify" signal for the property property_name on object.

    When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.

    Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.

    Parameters

    • property_name: string

      the name of a property installed on the class of object.

    Returns void

  • Emits a "notify" signal for the property specified by pspec on object.

    This function omits the property name lookup, hence it is faster than g_object_notify().

    One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:

      enum
    {
    PROP_0,
    PROP_FOO,
    PROP_LAST
    };

    static GParamSpec *properties[PROP_LAST];

    static void
    my_object_class_init (MyObjectClass *klass)
    {
    properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
    0, 100,
    50,
    G_PARAM_READWRITE);
    g_object_class_install_property (gobject_class,
    PROP_FOO,
    properties[PROP_FOO]);
    }

    and then notify a change on the "foo" property with:

      g_object_notify_by_pspec (self, properties[PROP_FOO]);
    

    Parameters

    • pspec: ParamSpec

      the #GParamSpec of a property installed on the class of object.

    Returns void

  • Informs Pango that the way that the rendering is done for part has changed.

    This should be called if the rendering changes in a way that would prevent multiple pieces being joined together into one drawing call. For instance, if a subclass of PangoRenderer was to add a stipple option for drawing underlines, it needs to call

    pango_renderer_part_changed (render, PANGO_RENDER_PART_UNDERLINE);
    

    When the stipple changes or underlines with different stipples might be joined together. Pango automatically calls this for changes to colors. (See [methodPango.Renderer.set_color])

    Parameters

    • part: RenderPart

      the part for which rendering has changed.

    Returns void

  • Increases the reference count of object.

    Since GLib 2.56, if GLIB_VERSION_MAX_ALLOWED is 2.56 or greater, the type of object will be propagated to the return type (using the GCC typeof() extension), so any casting the caller needs to do on the return type must be explicit.

    Returns GObject.Object

  • Increase the reference count of object, and possibly remove the [floating][floating-ref] reference, if object has a floating reference.

    In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.

    Since GLib 2.56, the type of object will be propagated to the return type under the same conditions as for g_object_ref().

    Returns GObject.Object

  • run_dispose(): void
  • Releases all references to other objects. This can be used to break reference cycles.

    This function should only be called from object system implementations.

    Returns void

  • Sets the alpha for part of the rendering.

    Note that the alpha may only be used if a color is specified for part as well.

    Parameters

    • part: RenderPart

      the part to set the alpha for

    • alpha: number

      an alpha value between 1 and 65536, or 0 to unset the alpha

    Returns void

  • Sets the color for part of the rendering.

    Also see [methodPango.Renderer.set_alpha].

    Parameters

    • part: RenderPart

      the part to change the color of

    • color: Pango.Color

      the new color or %NULL to unset the current color

    Returns void

  • set_data(key: string, data?: object): void
  • Each object carries around a table of associations from strings to pointers. This function lets you set an association.

    If the object already had an association with that name, the old association will be destroyed.

    Internally, the key is converted to a #GQuark using g_quark_from_string(). This means a copy of key is kept permanently (even after object has been finalized) — so it is recommended to only use a small, bounded set of values for key in your program, to avoid the #GQuark storage growing unbounded.

    Parameters

    • key: string

      name of the key

    • Optional data: object

      data to associate with that key

    Returns void

  • Sets the transformation matrix that will be applied when rendering.

    Parameters

    • matrix: Pango.Matrix

      a PangoMatrix, or %NULL to unset any existing matrix (No matrix set is the same as setting the identity matrix.)

    Returns void

  • set_property(property_name: string, value?: any): void
  • steal_data(key?: string): object
  • Remove a specified datum from the object's data associations, without invoking the association's destroy handler.

    Parameters

    • Optional key: string

      name of the key

    Returns object

  • steal_qdata(quark: number): object
  • This function gets back user data pointers stored via g_object_set_qdata() and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example:

    void
    object_add_to_user_list (GObject *object,
    const gchar *new_string)
    {
    // the quark, naming the object data
    GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
    // retrieve the old string list
    GList *list = g_object_steal_qdata (object, quark_string_list);

    // prepend new string
    list = g_list_prepend (list, g_strdup (new_string));
    // this changed 'list', so we need to set it again
    g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
    }
    static void
    free_string_list (gpointer data)
    {
    GList *node, *list = data;

    for (node = list; node; node = node->next)
    g_free (node->data);
    g_list_free (list);
    }

    Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().

    Parameters

    • quark: number

      A #GQuark, naming the user data pointer

    Returns object

  • thaw_notify(): void
  • Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on object and when it reaches zero, queued "notify" signals are emitted.

    Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.

    It is an error to call this function when the freeze count is zero.

    Returns void

  • unref(): void
  • Decreases the reference count of object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).

    If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.

    Returns void

  • vfunc_begin(): void
  • vfunc_constructed(): void
  • vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: ParamSpec): void
  • vfunc_dispose(): void
  • vfunc_draw_error_underline(x: number, y: number, width: number, height: number): void
  • Draw a squiggly line that approximately covers the given rectangle in the style of an underline used to indicate a spelling error.

    The width of the underline is rounded to an integer number of up/down segments and the resulting rectangle is centered in the original rectangle.

    This should be called while renderer is already active. Use [methodPango.Renderer.activate] to activate a renderer.

    virtual

    Parameters

    • x: number

      X coordinate of underline, in Pango units in user coordinate system

    • y: number

      Y coordinate of underline, in Pango units in user coordinate system

    • width: number

      width of underline, in Pango units in user coordinate system

    • height: number

      height of underline, in Pango units in user coordinate system

    Returns void

  • vfunc_draw_glyph(font: Pango.Font, glyph: number, x: number, y: number): void
  • Draws a single glyph with coordinates in device space.

    virtual

    Parameters

    • font: Pango.Font

      a PangoFont

    • glyph: number

      the glyph index of a single glyph

    • x: number

      X coordinate of left edge of baseline of glyph

    • y: number

      Y coordinate of left edge of baseline of glyph

    Returns void

  • vfunc_draw_glyph_item(text: string, glyph_item: GlyphItem, x: number, y: number): void
  • Draws the glyphs in glyph_item with the specified PangoRenderer, embedding the text associated with the glyphs in the output if the output format supports it.

    This is useful for rendering text in PDF.

    Note that this method does not handle attributes in glyph_item. If you want colors, shapes and lines handled automatically according to those attributes, you need to use pango_renderer_draw_layout_line() or pango_renderer_draw_layout().

    Note that text is the start of the text for layout, which is then indexed by glyph_item->item->offset.

    If text is %NULL, this simply calls [methodPango.Renderer.draw_glyphs].

    The default implementation of this method simply falls back to [methodPango.Renderer.draw_glyphs].

    virtual

    Parameters

    • text: string

      the UTF-8 text that glyph_item refers to

    • glyph_item: GlyphItem

      a PangoGlyphItem

    • x: number

      X position of left edge of baseline, in user space coordinates in Pango units

    • y: number

      Y position of left edge of baseline, in user space coordinates in Pango units

    Returns void

  • Draws the glyphs in glyphs with the specified PangoRenderer.

    virtual

    Parameters

    • font: Pango.Font

      a PangoFont

    • glyphs: GlyphString

      a PangoGlyphString

    • x: number

      X position of left edge of baseline, in user space coordinates in Pango units.

    • y: number

      Y position of left edge of baseline, in user space coordinates in Pango units.

    Returns void

  • vfunc_draw_rectangle(part: RenderPart, x: number, y: number, width: number, height: number): void
  • Draws an axis-aligned rectangle in user space coordinates with the specified PangoRenderer.

    This should be called while renderer is already active. Use [methodPango.Renderer.activate] to activate a renderer.

    virtual

    Parameters

    • part: RenderPart

      type of object this rectangle is part of

    • x: number

      X position at which to draw rectangle, in user space coordinates in Pango units

    • y: number

      Y position at which to draw rectangle, in user space coordinates in Pango units

    • width: number

      width of rectangle in Pango units

    • height: number

      height of rectangle in Pango units

    Returns void

  • vfunc_draw_shape(attr: AttrShape, x: number, y: number): void
  • vfunc_draw_trapezoid(part: RenderPart, y1_: number, x11: number, x21: number, y2: number, x12: number, x22: number): void
  • Draws a trapezoid with the parallel sides aligned with the X axis using the given PangoRenderer; coordinates are in device space.

    virtual

    Parameters

    • part: RenderPart

      type of object this trapezoid is part of

    • y1_: number

      Y coordinate of top of trapezoid

    • x11: number

      X coordinate of left end of top of trapezoid

    • x21: number

      X coordinate of right end of top of trapezoid

    • y2: number

      Y coordinate of bottom of trapezoid

    • x12: number

      X coordinate of left end of bottom of trapezoid

    • x22: number

      X coordinate of right end of bottom of trapezoid

    Returns void

  • vfunc_end(): void
  • vfunc_finalize(): void
  • vfunc_get_property(property_id: number, value?: any, pspec?: ParamSpec): void
  • Emits a "notify" signal for the property property_name on object.

    When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.

    Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.

    virtual

    Parameters

    Returns void

  • Informs Pango that the way that the rendering is done for part has changed.

    This should be called if the rendering changes in a way that would prevent multiple pieces being joined together into one drawing call. For instance, if a subclass of PangoRenderer was to add a stipple option for drawing underlines, it needs to call

    pango_renderer_part_changed (render, PANGO_RENDER_PART_UNDERLINE);
    

    When the stipple changes or underlines with different stipples might be joined together. Pango automatically calls this for changes to colors. (See [methodPango.Renderer.set_color])

    virtual

    Parameters

    • part: RenderPart

      the part for which rendering has changed.

    Returns void

  • vfunc_set_property(property_id: number, value?: any, pspec?: ParamSpec): void
  • watch_closure(closure: TClosure<any, any>): void
  • This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.

    Parameters

    • closure: TClosure<any, any>

      #GClosure to watch

    Returns void

  • compat_control(what: number, data: object): number
  • Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

    Parameters

    • g_iface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface

    • property_name: string

      name of a property to look up.

    Returns ParamSpec

  • Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.

    This function is meant to be called from the interface's default vtable initialization function (the class_init member of #GTypeInfo.) It must not be called after after class_init has been called for any object types implementing this interface.

    If pspec is a floating reference, it will be consumed.

    Parameters

    • g_iface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface.

    • pspec: ParamSpec

      the #GParamSpec for the new property

    Returns void

  • Lists the properties of an interface.Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

    Parameters

    • g_iface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface

    Returns ParamSpec[]

  • Creates a new instance of a #GObject subtype and sets its properties.

    Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.

    Parameters

    • object_type: GType<unknown>

      the type id of the #GObject subtype to instantiate

    • parameters: GObject.Parameter[]

      an array of #GParameter

    Returns GObject.Object

Legend

  • Module
  • Object literal
  • Variable
  • Function
  • Function with type parameter
  • Index signature
  • Type alias
  • Type alias with type parameter
  • Enumeration
  • Enumeration member
  • Property
  • Method
  • Interface
  • Interface with type parameter
  • Constructor
  • Property
  • Method
  • Index signature
  • Class
  • Class with type parameter
  • Constructor
  • Property
  • Method
  • Accessor
  • Index signature
  • Inherited constructor
  • Inherited property
  • Inherited method
  • Inherited accessor
  • Protected property
  • Protected method
  • Protected accessor
  • Private property
  • Private method
  • Private accessor
  • Static property
  • Static method