Gjsify LogoGjsify Logo

A proxy object representing a collection of secrets in the Secret Service.

Hierarchy

Index

Constructors

Properties

Methods

Constructors

Properties

created: number

The date and time (in seconds since the UNIX epoch) that this collection was created.

g_bus_type: Gio.BusType

If this property is not %G_BUS_TYPE_NONE, then #GDBusProxy:g-connection must be %NULL and will be set to the #GDBusConnection obtained by calling g_bus_get() with the value of this property.

g_connection: DBusConnection

The #GDBusConnection the proxy is for.

g_default_timeout: number

The timeout to use if -1 (specifying default timeout) is passed as timeout_msec in the g_dbus_proxy_call() and g_dbus_proxy_call_sync() functions.

This allows applications to set a proxy-wide timeout for all remote method invocations on the proxy. If this property is -1, the default timeout (typically 25 seconds) is used. If set to %G_MAXINT, then no timeout is used.

Flags from the #GDBusProxyFlags enumeration.

g_interface_info: DBusInterfaceInfo

Ensure that interactions with this proxy conform to the given interface. This is mainly to ensure that malformed data received from the other peer is ignored. The given #GDBusInterfaceInfo is said to be the "expected interface".

The checks performed are:

  • When completing a method call, if the type signature of the reply message isn't what's expected, the reply is discarded and the #GError is set to %G_IO_ERROR_INVALID_ARGUMENT.

  • Received signals that have a type signature mismatch are dropped and a warning is logged via g_warning().

  • Properties received via the initial GetAll() call or via the ::PropertiesChanged signal (on the org.freedesktop.DBus.Properties interface) or set using g_dbus_proxy_set_cached_property() with a type signature mismatch are ignored and a warning is logged via g_warning().

Note that these checks are never done on methods, signals and properties that are not referenced in the given #GDBusInterfaceInfo, since extending a D-Bus interface on the service-side is not considered an ABI break.

g_interface_name: string

The D-Bus interface name the proxy is for.

g_name: string

The well-known or unique name that the proxy is for.

g_name_owner: string

The unique name that owns #GDBusProxy:g-name or %NULL if no-one currently owns that name. You may connect to #GObject::notify signal to track changes to this property.

g_object_path: string

The object path the proxy is for.

g_type_instance: TypeInstance
label: string

The human readable label for the collection.

Setting this property will result in the label of the collection being set asynchronously. To properly track the changing of the label use the secret_collection_set_label() function.

locked: boolean

Whether the collection is locked or not.

To lock or unlock a collection use the secret_service_lock() or secret_service_unlock() functions.

modified: number

The date and time (in seconds since the UNIX epoch) that this collection was last modified.

parent: DBusProxy

The #SecretService object that this collection is associated with and uses to interact with the actual D-Bus Secret Service.

name: string

Methods

  • Creates a binding between source_property on source and target_property on target.

    Whenever the source_property is changed the target_property is updated using the same value. For instance:

      g_object_bind_property (action, "active", widget, "sensitive", 0);
    

    Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.

    If flags contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual: if target_property on target changes then the source_property on source will be updated as well.

    The binding will automatically be removed when either the source or the target instances are finalized. To remove the binding without affecting the source and the target you can just call g_object_unref() on the returned #GBinding instance.

    Removing the binding by calling g_object_unref() on it must only be done if the binding, source and target are only used from a single thread and it is clear that both source and target outlive the binding. Especially it is not safe to rely on this if the binding, source or target can be finalized from different threads. Keep another reference to the binding and use g_binding_unbind() instead to be on the safe side.

    A #GObject can have multiple bindings.

    Parameters

    • source_property: string

      the property on source to bind

    • target: GObject.Object

      the target #GObject

    • target_property: string

      the property on target to bind

    • flags: BindingFlags

      flags to pass to #GBinding

    Returns Binding

  • Creates a binding between source_property on source and target_property on target, allowing you to set the transformation functions to be used by the binding.

    This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.

    Parameters

    • source_property: string

      the property on source to bind

    • target: GObject.Object

      the target #GObject

    • target_property: string

      the property on target to bind

    • flags: BindingFlags

      flags to pass to #GBinding

    • transform_to: TClosure<any, any>

      a #GClosure wrapping the transformation function from the source to the target, or %NULL to use the default

    • transform_from: TClosure<any, any>

      a #GClosure wrapping the transformation function from the target to the source, or %NULL to use the default

    Returns Binding

  • Asynchronously invokes the method_name method on proxy.

    If method_name contains any dots, then name is split into interface and method name parts. This allows using proxy for invoking methods on other interfaces.

    If the #GDBusConnection associated with proxy is closed then the operation will fail with %G_IO_ERROR_CLOSED. If cancellable is canceled, the operation will fail with %G_IO_ERROR_CANCELLED. If parameters contains a value not compatible with the D-Bus protocol, the operation fails with %G_IO_ERROR_INVALID_ARGUMENT.

    If the parameters #GVariant is floating, it is consumed. This allows convenient 'inline' use of g_variant_new(), e.g.:

     g_dbus_proxy_call (proxy,
    "TwoStrings",
    g_variant_new ("(ss)",
    "Thing One",
    "Thing Two"),
    G_DBUS_CALL_FLAGS_NONE,
    -1,
    NULL,
    (GAsyncReadyCallback) two_strings_done,
    &data);

    If proxy has an expected interface (see #GDBusProxy:g-interface-info) and method_name is referenced by it, then the return value is checked against the return type.

    This is an asynchronous method. When the operation is finished, callback will be invoked in the [thread-default main context][g-main-context-push-thread-default] of the thread you are calling this method from. You can then call g_dbus_proxy_call_finish() to get the result of the operation. See g_dbus_proxy_call_sync() for the synchronous version of this method.

    If callback is %NULL then the D-Bus method call message will be sent with the %G_DBUS_MESSAGE_FLAGS_NO_REPLY_EXPECTED flag set.

    Parameters

    • method_name: string

      Name of method to invoke.

    • parameters: GLib.Variant

      A #GVariant tuple with parameters for the signal or %NULL if not passing parameters.

    • flags: DBusCallFlags

      Flags from the #GDBusCallFlags enumeration.

    • timeout_msec: number

      The timeout in milliseconds (with %G_MAXINT meaning "infinite") or -1 to use the proxy default timeout.

    • cancellable: Gio.Cancellable

      A #GCancellable or %NULL.

    • callback: AsyncReadyCallback

      A #GAsyncReadyCallback to call when the request is satisfied or %NULL if you don't care about the result of the method invocation.

    Returns void

  • Synchronously invokes the method_name method on proxy.

    If method_name contains any dots, then name is split into interface and method name parts. This allows using proxy for invoking methods on other interfaces.

    If the #GDBusConnection associated with proxy is disconnected then the operation will fail with %G_IO_ERROR_CLOSED. If cancellable is canceled, the operation will fail with %G_IO_ERROR_CANCELLED. If parameters contains a value not compatible with the D-Bus protocol, the operation fails with %G_IO_ERROR_INVALID_ARGUMENT.

    If the parameters #GVariant is floating, it is consumed. This allows convenient 'inline' use of g_variant_new(), e.g.:

     g_dbus_proxy_call_sync (proxy,
    "TwoStrings",
    g_variant_new ("(ss)",
    "Thing One",
    "Thing Two"),
    G_DBUS_CALL_FLAGS_NONE,
    -1,
    NULL,
    &error);

    The calling thread is blocked until a reply is received. See g_dbus_proxy_call() for the asynchronous version of this method.

    If proxy has an expected interface (see #GDBusProxy:g-interface-info) and method_name is referenced by it, then the return value is checked against the return type.

    Parameters

    • method_name: string

      Name of method to invoke.

    • parameters: GLib.Variant

      A #GVariant tuple with parameters for the signal or %NULL if not passing parameters.

    • flags: DBusCallFlags

      Flags from the #GDBusCallFlags enumeration.

    • timeout_msec: number

      The timeout in milliseconds (with %G_MAXINT meaning "infinite") or -1 to use the proxy default timeout.

    • cancellable: Gio.Cancellable

      A #GCancellable or %NULL.

    Returns GLib.Variant

  • Like g_dbus_proxy_call() but also takes a #GUnixFDList object.

    This method is only available on UNIX.

    Parameters

    • method_name: string

      Name of method to invoke.

    • parameters: GLib.Variant

      A #GVariant tuple with parameters for the signal or %NULL if not passing parameters.

    • flags: DBusCallFlags

      Flags from the #GDBusCallFlags enumeration.

    • timeout_msec: number

      The timeout in milliseconds (with %G_MAXINT meaning "infinite") or -1 to use the proxy default timeout.

    • fd_list: UnixFDList

      A #GUnixFDList or %NULL.

    • cancellable: Gio.Cancellable

      A #GCancellable or %NULL.

    • callback: AsyncReadyCallback

      A #GAsyncReadyCallback to call when the request is satisfied or %NULL if you don't care about the result of the method invocation.

    Returns void

  • Like g_dbus_proxy_call_sync() but also takes and returns #GUnixFDList objects.

    This method is only available on UNIX.

    Parameters

    • method_name: string

      Name of method to invoke.

    • parameters: GLib.Variant

      A #GVariant tuple with parameters for the signal or %NULL if not passing parameters.

    • flags: DBusCallFlags

      Flags from the #GDBusCallFlags enumeration.

    • timeout_msec: number

      The timeout in milliseconds (with %G_MAXINT meaning "infinite") or -1 to use the proxy default timeout.

    • fd_list: UnixFDList

      A #GUnixFDList or %NULL.

    • cancellable: Gio.Cancellable

      A #GCancellable or %NULL.

    Returns [GLib.Variant, UnixFDList]

  • Delete this collection.

    This method returns immediately and completes asynchronously. The secret service may prompt the user. secret_service_prompt() will be used to handle any prompts that show up.

    Parameters

    Returns void

  • Delete this collection.

    This method may block indefinitely and should not be used in user interface threads. The secret service may prompt the user. secret_service_prompt() will be used to handle any prompts that show up.

    Parameters

    Returns boolean

  • disconnect(id: number): void
  • emit(sigName: "notify::created", ...args: any[]): void
  • emit(sigName: "notify::label", ...args: any[]): void
  • emit(sigName: "notify::locked", ...args: any[]): void
  • emit(sigName: "notify::modified", ...args: any[]): void
  • emit(sigName: "notify::service", ...args: any[]): void
  • emit(sigName: "notify::g-bus-type", ...args: any[]): void
  • emit(sigName: "notify::g-connection", ...args: any[]): void
  • emit(sigName: "notify::g-default-timeout", ...args: any[]): void
  • emit(sigName: "notify::g-flags", ...args: any[]): void
  • emit(sigName: "notify::g-interface-info", ...args: any[]): void
  • emit(sigName: "notify::g-interface-name", ...args: any[]): void
  • emit(sigName: "notify::g-name", ...args: any[]): void
  • emit(sigName: "notify::g-name-owner", ...args: any[]): void
  • emit(sigName: "notify::g-object-path", ...args: any[]): void
  • emit(sigName: string, ...args: any[]): void
  • force_floating(): void
  • This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().

    Returns void

  • freeze_notify(): void
  • Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.

    This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.

    Returns void

  • get_cached_property(property_name: string): GLib.Variant
  • Looks up the value for a property from the cache. This call does no blocking IO.

    If proxy has an expected interface (see #GDBusProxy:g-interface-info) and property_name is referenced by it, then value is checked against the type of the property.

    Parameters

    • property_name: string

      Property name.

    Returns GLib.Variant

  • get_cached_property_names(): string[]
  • get_created(): number
  • Get the created date and time of the collection. The return value is the number of seconds since the unix epoch, January 1st 1970.

    Returns number

  • get_data(key?: string): object
  • get_default_timeout(): number
  • Gets the timeout to use if -1 (specifying default timeout) is passed as timeout_msec in the g_dbus_proxy_call() and g_dbus_proxy_call_sync() functions.

    See the #GDBusProxy:g-default-timeout property for more details.

    Returns number

  • get_interface_name(): string
  • get_label(): string
  • get_locked(): boolean
  • Get whether the collection is locked or not.

    Use secret_service_lock() or secret_service_unlock() to lock or unlock the collection.

    Returns boolean

  • get_modified(): number
  • Get the modified date and time of the collection. The return value is the number of seconds since the unix epoch, January 1st 1970.

    Returns number

  • get_name(): string
  • Gets the name that proxy was constructed for.

    When connected to a message bus, this will usually be non-%NULL. However, it may be %NULL for a proxy that communicates using a peer-to-peer pattern.

    Returns string

  • get_name_owner(): string
  • The unique name that owns the name that proxy is for or %NULL if no-one currently owns that name. You may connect to the #GObject::notify signal to track changes to the #GDBusProxy:g-name-owner property.

    Returns string

  • get_object_path(): string
  • get_property(property_name?: string, value?: any): void
  • Gets a property of an object.

    The value can be:

    • an empty #GValue initialized by %G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
    • a #GValue initialized with the expected type of the property
    • a #GValue initialized with a type to which the expected type of the property can be transformed

    In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().

    Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.

    Parameters

    • Optional property_name: string

      the name of the property to get

    • Optional value: any

      return location for the property value

    Returns void

  • get_qdata(quark: number): object
  • getv(names: string[], values: any[]): void
  • Gets n_properties properties for an object. Obtained properties will be set to values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.

    Parameters

    • names: string[]

      the names of each property to get

    • values: any[]

      the values of each property to get

    Returns void

  • Initializes the object implementing the interface.

    This method is intended for language bindings. If writing in C, g_initable_new() should typically be used instead.

    The object must be initialized before any real use after initial construction, either with this function or g_async_initable_init_async().

    Implementations may also support cancellation. If cancellable is not %NULL, then initialization can be cancelled by triggering the cancellable object from another thread. If the operation was cancelled, the error %G_IO_ERROR_CANCELLED will be returned. If cancellable is not %NULL and the object doesn't support cancellable initialization the error %G_IO_ERROR_NOT_SUPPORTED will be returned.

    If the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. See the [introduction][ginitable] for more details.

    Callers should not assume that a class which implements #GInitable can be initialized multiple times, unless the class explicitly documents itself as supporting this. Generally, a class’ implementation of init() can assume (and assert) that it will only be called once. Previously, this documentation recommended all #GInitable implementations should be idempotent; that recommendation was relaxed in GLib 2.54.

    If a class explicitly supports being initialized multiple times, it is recommended that the method is idempotent: multiple calls with the same arguments should return the same results. Only the first call initializes the object; further calls return the result of the first call.

    One reason why a class might need to support idempotent initialization is if it is designed to be used via the singleton pattern, with a #GObjectClass.constructor that sometimes returns an existing instance. In this pattern, a caller would expect to be able to call g_initable_init() on the result of g_object_new(), regardless of whether it is in fact a new instance.

    Parameters

    • Optional cancellable: Gio.Cancellable

      optional #GCancellable object, %NULL to ignore.

    Returns boolean

  • Starts asynchronous initialization of the object implementing the interface. This must be done before any real use of the object after initial construction. If the object also implements #GInitable you can optionally call g_initable_init() instead.

    This method is intended for language bindings. If writing in C, g_async_initable_new_async() should typically be used instead.

    When the initialization is finished, callback will be called. You can then call g_async_initable_init_finish() to get the result of the initialization.

    Implementations may also support cancellation. If cancellable is not %NULL, then initialization can be cancelled by triggering the cancellable object from another thread. If the operation was cancelled, the error %G_IO_ERROR_CANCELLED will be returned. If cancellable is not %NULL, and the object doesn't support cancellable initialization, the error %G_IO_ERROR_NOT_SUPPORTED will be returned.

    As with #GInitable, if the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. They will often fail with g_critical() or g_warning(), but this must not be relied on.

    Callers should not assume that a class which implements #GAsyncInitable can be initialized multiple times; for more information, see g_initable_init(). If a class explicitly supports being initialized multiple times, implementation requires yielding all subsequent calls to init_async() on the results of the first call.

    For classes that also support the #GInitable interface, the default implementation of this method will run the g_initable_init() function in a thread, so if you want to support asynchronous initialization via threads, just implement the #GAsyncInitable interface without overriding any interface methods.

    Parameters

    • io_priority: number

      the [I/O priority][io-priority] of the operation

    • Optional cancellable: Gio.Cancellable

      optional #GCancellable object, %NULL to ignore.

    • Optional callback: AsyncReadyCallback

      a #GAsyncReadyCallback to call when the request is satisfied

    Returns void

  • is_floating(): boolean
  • Ensure that the #SecretCollection proxy has loaded all the items present in the Secret Service. This affects the result of secret_collection_get_items().

    For collections returned from secret_service_get_collections() the items will have already been loaded.

    This method will return immediately and complete asynchronously.

    Parameters

    Returns void

  • Complete an asynchronous operation to ensure that the #SecretCollection proxy has loaded all the items present in the Secret Service.

    Parameters

    • result: AsyncResult

      the asynchronous result passed to the callback

    Returns boolean

  • Ensure that the #SecretCollection proxy has loaded all the items present in the Secret Service. This affects the result of secret_collection_get_items().

    For collections returned from secret_service_get_collections() the items will have already been loaded.

    This method may block indefinitely and should not be used in user interface threads.

    Parameters

    Returns boolean

  • notify(property_name: string): void
  • Emits a "notify" signal for the property property_name on object.

    When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.

    Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.

    Parameters

    • property_name: string

      the name of a property installed on the class of object.

    Returns void

  • Emits a "notify" signal for the property specified by pspec on object.

    This function omits the property name lookup, hence it is faster than g_object_notify().

    One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:

      enum
    {
    PROP_0,
    PROP_FOO,
    PROP_LAST
    };

    static GParamSpec *properties[PROP_LAST];

    static void
    my_object_class_init (MyObjectClass *klass)
    {
    properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
    0, 100,
    50,
    G_PARAM_READWRITE);
    g_object_class_install_property (gobject_class,
    PROP_FOO,
    properties[PROP_FOO]);
    }

    and then notify a change on the "foo" property with:

      g_object_notify_by_pspec (self, properties[PROP_FOO]);
    

    Parameters

    • pspec: ParamSpec

      the #GParamSpec of a property installed on the class of object.

    Returns void

  • Increases the reference count of object.

    Since GLib 2.56, if GLIB_VERSION_MAX_ALLOWED is 2.56 or greater, the type of object will be propagated to the return type (using the GCC typeof() extension), so any casting the caller needs to do on the return type must be explicit.

    Returns GObject.Object

  • Increase the reference count of object, and possibly remove the [floating][floating-ref] reference, if object has a floating reference.

    In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.

    Since GLib 2.56, the type of object will be propagated to the return type under the same conditions as for g_object_ref().

    Returns GObject.Object

  • refresh(): void
  • Refresh the properties on this collection. This fires off a request to refresh, and the properties will be updated later.

    Calling this method is not normally necessary, as the secret service will notify the client when properties change.

    Returns void

  • run_dispose(): void
  • Search for items matching the attributes in the collection. The attributes should be a table of string keys and string values.

    If %SECRET_SEARCH_ALL is set in flags, then all the items matching the search will be returned. Otherwise only the first item will be returned. This is almost always the unlocked item that was most recently stored.

    If %SECRET_SEARCH_UNLOCK is set in flags, then items will be unlocked if necessary. In either case, locked and unlocked items will match the search and be returned. If the unlock fails, the search does not fail.

    If %SECRET_SEARCH_LOAD_SECRETS is set in flags, then the items will have their secret values loaded and available via secret_item_get_secret().

    This function returns immediately and completes asynchronously.

    Parameters

    Returns void

  • Search for items in collection matching the attributes, and return their DBus object paths. Only the specified collection is searched. The attributes should be a table of string keys and string values.

    This function returns immediately and completes asynchronously.

    When your callback is called use secret_collection_search_for_dbus_paths_finish() to get the results of this function. Only the DBus object paths of the items will be returned. If you would like #SecretItem objects to be returned instead, then use the secret_collection_search() function.

    Parameters

    • schema: Secret.Schema

      the schema for the attributes

    • attributes: HashTable<string | number | symbol, string | number | boolean>

      search for items matching these attributes

    • cancellable: Gio.Cancellable

      optional cancellation object

    • callback: AsyncReadyCallback

      called when the operation completes

    Returns void

  • search_for_dbus_paths_finish(result: AsyncResult): string[]
  • Complete asynchronous operation to search for items in a collection.

    DBus object paths of the items will be returned. If you would to have #SecretItem objects to be returned instead, then use the secret_collection_search() and secret_collection_search_finish() functions.

    Parameters

    • result: AsyncResult

      asynchronous result passed to callback

    Returns string[]

  • Search for items matching the attributes in collection, and return their DBus object paths. The attributes should be a table of string keys and string values.

    This function may block indefinetely. Use the asynchronous version in user interface threads.

    DBus object paths of the items will be returned. If you would to have #SecretItem objects to be returned instead, then use the secret_collection_search_sync() function.

    Parameters

    • schema: Secret.Schema

      the schema for the attributes

    • attributes: HashTable<string | number | symbol, string | number | boolean>

      search for items matching these attributes

    • Optional cancellable: Gio.Cancellable

      optional cancellation object

    Returns string[]

  • Search for items matching the attributes in the collection. The attributes should be a table of string keys and string values.

    If %SECRET_SEARCH_ALL is set in flags, then all the items matching the search will be returned. Otherwise only the first item will be returned. This is almost always the unlocked item that was most recently stored.

    If %SECRET_SEARCH_UNLOCK is set in flags, then items will be unlocked if necessary. In either case, locked and unlocked items will match the search and be returned. If the unlock fails, the search does not fail.

    If %SECRET_SEARCH_LOAD_SECRETS is set in flags, then the items will have their secret values loaded and available via secret_item_get_secret().

    This function may block indefinetely. Use the asynchronous version in user interface threads.

    Parameters

    Returns SecretUnstable.Item[]

  • set_cached_property(property_name: string, value: GLib.Variant): void
  • If value is not %NULL, sets the cached value for the property with name property_name to the value in value.

    If value is %NULL, then the cached value is removed from the property cache.

    If proxy has an expected interface (see #GDBusProxy:g-interface-info) and property_name is referenced by it, then value is checked against the type of the property.

    If the value #GVariant is floating, it is consumed. This allows convenient 'inline' use of g_variant_new(), e.g.

     g_dbus_proxy_set_cached_property (proxy,
    "SomeProperty",
    g_variant_new ("(si)",
    "A String",
    42));

    Normally you will not need to use this method since proxy is tracking changes using the org.freedesktop.DBus.Properties.PropertiesChanged D-Bus signal. However, for performance reasons an object may decide to not use this signal for some properties and instead use a proprietary out-of-band mechanism to transmit changes.

    As a concrete example, consider an object with a property ChatroomParticipants which is an array of strings. Instead of transmitting the same (long) array every time the property changes, it is more efficient to only transmit the delta using e.g. signals ChatroomParticipantJoined(String name) and ChatroomParticipantParted(String name).

    Parameters

    • property_name: string

      Property name.

    • value: GLib.Variant

      Value for the property or %NULL to remove it from the cache.

    Returns void

  • set_data(key: string, data?: object): void
  • Each object carries around a table of associations from strings to pointers. This function lets you set an association.

    If the object already had an association with that name, the old association will be destroyed.

    Internally, the key is converted to a #GQuark using g_quark_from_string(). This means a copy of key is kept permanently (even after object has been finalized) — so it is recommended to only use a small, bounded set of values for key in your program, to avoid the #GQuark storage growing unbounded.

    Parameters

    • key: string

      name of the key

    • Optional data: object

      data to associate with that key

    Returns void

  • set_default_timeout(timeout_msec: number): void
  • Sets the timeout to use if -1 (specifying default timeout) is passed as timeout_msec in the g_dbus_proxy_call() and g_dbus_proxy_call_sync() functions.

    See the #GDBusProxy:g-default-timeout property for more details.

    Parameters

    • timeout_msec: number

      Timeout in milliseconds.

    Returns void

  • Set the label of this collection.

    This function may block indefinetely. Use the asynchronous version in user interface threads.

    Parameters

    • label: string

      a new label

    • Optional cancellable: Gio.Cancellable

      optional cancellation object

    Returns boolean

  • set_property(property_name: string, value?: any): void
  • steal_data(key?: string): object
  • steal_qdata(quark: number): object
  • This function gets back user data pointers stored via g_object_set_qdata() and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example:

    void
    object_add_to_user_list (GObject *object,
    const gchar *new_string)
    {
    // the quark, naming the object data
    GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
    // retrieve the old string list
    GList *list = g_object_steal_qdata (object, quark_string_list);

    // prepend new string
    list = g_list_prepend (list, g_strdup (new_string));
    // this changed 'list', so we need to set it again
    g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
    }
    static void
    free_string_list (gpointer data)
    {
    GList *node, *list = data;

    for (node = list; node; node = node->next)
    g_free (node->data);
    g_list_free (list);
    }

    Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().

    Parameters

    • quark: number

      A #GQuark, naming the user data pointer

    Returns object

  • thaw_notify(): void
  • Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on object and when it reaches zero, queued "notify" signals are emitted.

    Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.

    It is an error to call this function when the freeze count is zero.

    Returns void

  • unref(): void
  • Decreases the reference count of object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).

    If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.

    Returns void

  • vfunc_constructed(): void
  • vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: ParamSpec): void
  • vfunc_dispose(): void
  • vfunc_finalize(): void
  • vfunc_g_properties_changed(changed_properties: GLib.Variant, invalidated_properties: string): void
  • vfunc_g_signal(sender_name: string, signal_name: string, parameters: GLib.Variant): void
  • vfunc_get_property(property_id: number, value?: any, pspec?: ParamSpec): void
  • Initializes the object implementing the interface.

    This method is intended for language bindings. If writing in C, g_initable_new() should typically be used instead.

    The object must be initialized before any real use after initial construction, either with this function or g_async_initable_init_async().

    Implementations may also support cancellation. If cancellable is not %NULL, then initialization can be cancelled by triggering the cancellable object from another thread. If the operation was cancelled, the error %G_IO_ERROR_CANCELLED will be returned. If cancellable is not %NULL and the object doesn't support cancellable initialization the error %G_IO_ERROR_NOT_SUPPORTED will be returned.

    If the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. See the [introduction][ginitable] for more details.

    Callers should not assume that a class which implements #GInitable can be initialized multiple times, unless the class explicitly documents itself as supporting this. Generally, a class’ implementation of init() can assume (and assert) that it will only be called once. Previously, this documentation recommended all #GInitable implementations should be idempotent; that recommendation was relaxed in GLib 2.54.

    If a class explicitly supports being initialized multiple times, it is recommended that the method is idempotent: multiple calls with the same arguments should return the same results. Only the first call initializes the object; further calls return the result of the first call.

    One reason why a class might need to support idempotent initialization is if it is designed to be used via the singleton pattern, with a #GObjectClass.constructor that sometimes returns an existing instance. In this pattern, a caller would expect to be able to call g_initable_init() on the result of g_object_new(), regardless of whether it is in fact a new instance.

    virtual

    Parameters

    • Optional cancellable: Gio.Cancellable

      optional #GCancellable object, %NULL to ignore.

    Returns boolean

  • Starts asynchronous initialization of the object implementing the interface. This must be done before any real use of the object after initial construction. If the object also implements #GInitable you can optionally call g_initable_init() instead.

    This method is intended for language bindings. If writing in C, g_async_initable_new_async() should typically be used instead.

    When the initialization is finished, callback will be called. You can then call g_async_initable_init_finish() to get the result of the initialization.

    Implementations may also support cancellation. If cancellable is not %NULL, then initialization can be cancelled by triggering the cancellable object from another thread. If the operation was cancelled, the error %G_IO_ERROR_CANCELLED will be returned. If cancellable is not %NULL, and the object doesn't support cancellable initialization, the error %G_IO_ERROR_NOT_SUPPORTED will be returned.

    As with #GInitable, if the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. They will often fail with g_critical() or g_warning(), but this must not be relied on.

    Callers should not assume that a class which implements #GAsyncInitable can be initialized multiple times; for more information, see g_initable_init(). If a class explicitly supports being initialized multiple times, implementation requires yielding all subsequent calls to init_async() on the results of the first call.

    For classes that also support the #GInitable interface, the default implementation of this method will run the g_initable_init() function in a thread, so if you want to support asynchronous initialization via threads, just implement the #GAsyncInitable interface without overriding any interface methods.

    virtual

    Parameters

    • io_priority: number

      the [I/O priority][io-priority] of the operation

    • Optional cancellable: Gio.Cancellable

      optional #GCancellable object, %NULL to ignore.

    • Optional callback: AsyncReadyCallback

      a #GAsyncReadyCallback to call when the request is satisfied

    Returns void

  • Emits a "notify" signal for the property property_name on object.

    When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.

    Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.

    virtual

    Parameters

    Returns void

  • vfunc_set_property(property_id: number, value?: any, pspec?: ParamSpec): void
  • watch_closure(closure: TClosure<any, any>): void
  • This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.

    Parameters

    • closure: TClosure<any, any>

      #GClosure to watch

    Returns void

  • compat_control(what: number, data: object): number
  • Create a new collection in the secret service.

    This method returns immediately and completes asynchronously. The secret service may prompt the user. secret_service_prompt() will be used to handle any prompts that are required.

    An alias is a well-known tag for a collection, such as 'default' (ie: the default collection to store items in). This allows other applications to easily identify and share a collection. If you specify an alias, and a collection with that alias already exists, then a new collection will not be created. The previous one will be returned instead.

    If service is NULL, then secret_service_get() will be called to get the default #SecretService proxy.

    Parameters

    Returns void

  • Create a new collection in the secret service.

    This method may block indefinitely and should not be used in user interface threads. The secret service may prompt the user. secret_service_prompt() will be used to handle any prompts that are required.

    An alias is a well-known tag for a collection, such as 'default' (ie: the default collection to store items in). This allows other applications to easily identify and share a collection. If you specify an alias, and a collection with that alias already exists, then a new collection will not be created. The previous one will be returned instead.

    If service is NULL, then secret_service_get_sync() will be called to get the default #SecretService proxy.

    Parameters

    Returns SecretUnstable.Collection

  • Lookup which collection is assigned to this alias. Aliases help determine well known collections, such as 'default'.

    If service is NULL, then secret_service_get() will be called to get the default #SecretService proxy.

    This method will return immediately and complete asynchronously.

    Parameters

    Returns void

  • Lookup which collection is assigned to this alias. Aliases help determine well known collections, such as 'default'.

    If service is NULL, then secret_service_get_sync() will be called to get the default #SecretService proxy.

    This method may block and should not be used in user interface threads.

    Parameters

    Returns SecretUnstable.Collection

  • Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

    Parameters

    • g_iface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface

    • property_name: string

      name of a property to look up.

    Returns ParamSpec

  • Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.

    This function is meant to be called from the interface's default vtable initialization function (the class_init member of #GTypeInfo.) It must not be called after after class_init has been called for any object types implementing this interface.

    If pspec is a floating reference, it will be consumed.

    Parameters

    • g_iface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface.

    • pspec: ParamSpec

      the #GParamSpec for the new property

    Returns void

  • Lists the properties of an interface.Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

    Parameters

    • g_iface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface

    Returns ParamSpec[]

  • Creates a proxy for accessing interface_name on the remote object at object_path owned by name at connection and asynchronously loads D-Bus properties unless the %G_DBUS_PROXY_FLAGS_DO_NOT_LOAD_PROPERTIES flag is used. Connect to the #GDBusProxy::g-properties-changed signal to get notified about property changes.

    If the %G_DBUS_PROXY_FLAGS_DO_NOT_CONNECT_SIGNALS flag is not set, also sets up match rules for signals. Connect to the #GDBusProxy::g-signal signal to handle signals from the remote object.

    If both %G_DBUS_PROXY_FLAGS_DO_NOT_LOAD_PROPERTIES and %G_DBUS_PROXY_FLAGS_DO_NOT_CONNECT_SIGNALS are set, this constructor is guaranteed to complete immediately without blocking.

    If name is a well-known name and the %G_DBUS_PROXY_FLAGS_DO_NOT_AUTO_START and %G_DBUS_PROXY_FLAGS_DO_NOT_AUTO_START_AT_CONSTRUCTION flags aren't set and no name owner currently exists, the message bus will be requested to launch a name owner for the name.

    This is a failable asynchronous constructor - when the proxy is ready, callback will be invoked and you can use g_dbus_proxy_new_finish() to get the result.

    See g_dbus_proxy_new_sync() and for a synchronous version of this constructor.

    #GDBusProxy is used in this [example][gdbus-wellknown-proxy].

    Parameters

    • connection: DBusConnection

      A #GDBusConnection.

    • Optional flags: DBusProxyFlags

      Flags used when constructing the proxy.

    • Optional info: DBusInterfaceInfo

      A #GDBusInterfaceInfo specifying the minimal interface that proxy conforms to or %NULL.

    • Optional name: string

      A bus name (well-known or unique) or %NULL if connection is not a message bus connection.

    • Optional object_path: string

      An object path.

    • Optional interface_name: string

      A D-Bus interface name.

    • Optional cancellable: Gio.Cancellable

      A #GCancellable or %NULL.

    • Optional callback: AsyncReadyCallback

      Callback function to invoke when the proxy is ready.

    Returns void

  • Like g_dbus_proxy_new() but takes a #GBusType instead of a #GDBusConnection.

    #GDBusProxy is used in this [example][gdbus-wellknown-proxy].

    Parameters

    • bus_type: Gio.BusType

      A #GBusType.

    • Optional flags: DBusProxyFlags

      Flags used when constructing the proxy.

    • Optional info: DBusInterfaceInfo

      A #GDBusInterfaceInfo specifying the minimal interface that proxy conforms to or %NULL.

    • Optional name: string

      A bus name (well-known or unique).

    • Optional object_path: string

      An object path.

    • Optional interface_name: string

      A D-Bus interface name.

    • Optional cancellable: Gio.Cancellable

      A #GCancellable or %NULL.

    • Optional callback: AsyncReadyCallback

      Callback function to invoke when the proxy is ready.

    Returns void

  • Like g_dbus_proxy_new_sync() but takes a #GBusType instead of a #GDBusConnection.

    #GDBusProxy is used in this [example][gdbus-wellknown-proxy].

    Parameters

    • bus_type: Gio.BusType

      A #GBusType.

    • flags: DBusProxyFlags

      Flags used when constructing the proxy.

    • info: DBusInterfaceInfo

      A #GDBusInterfaceInfo specifying the minimal interface that proxy conforms to or %NULL.

    • name: string

      A bus name (well-known or unique).

    • object_path: string

      An object path.

    • interface_name: string

      A D-Bus interface name.

    • cancellable: Gio.Cancellable

      A #GCancellable or %NULL.

    Returns DBusProxy

  • Get a new collection proxy for a collection in the secret service.

    If service is NULL, then secret_service_get() will be called to get the default #SecretService proxy.

    This method will return immediately and complete asynchronously.

    Parameters

    Returns void

  • Creates a proxy for accessing interface_name on the remote object at object_path owned by name at connection and synchronously loads D-Bus properties unless the %G_DBUS_PROXY_FLAGS_DO_NOT_LOAD_PROPERTIES flag is used.

    If the %G_DBUS_PROXY_FLAGS_DO_NOT_CONNECT_SIGNALS flag is not set, also sets up match rules for signals. Connect to the #GDBusProxy::g-signal signal to handle signals from the remote object.

    If both %G_DBUS_PROXY_FLAGS_DO_NOT_LOAD_PROPERTIES and %G_DBUS_PROXY_FLAGS_DO_NOT_CONNECT_SIGNALS are set, this constructor is guaranteed to return immediately without blocking.

    If name is a well-known name and the %G_DBUS_PROXY_FLAGS_DO_NOT_AUTO_START and %G_DBUS_PROXY_FLAGS_DO_NOT_AUTO_START_AT_CONSTRUCTION flags aren't set and no name owner currently exists, the message bus will be requested to launch a name owner for the name.

    This is a synchronous failable constructor. See g_dbus_proxy_new() and g_dbus_proxy_new_finish() for the asynchronous version.

    #GDBusProxy is used in this [example][gdbus-wellknown-proxy].

    Parameters

    • connection: DBusConnection

      A #GDBusConnection.

    • flags: DBusProxyFlags

      Flags used when constructing the proxy.

    • info: DBusInterfaceInfo

      A #GDBusInterfaceInfo specifying the minimal interface that proxy conforms to or %NULL.

    • name: string

      A bus name (well-known or unique) or %NULL if connection is not a message bus connection.

    • object_path: string

      An object path.

    • interface_name: string

      A D-Bus interface name.

    • cancellable: Gio.Cancellable

      A #GCancellable or %NULL.

    Returns DBusProxy

  • Creates a new instance of a #GObject subtype and sets its properties.

    Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.

    Parameters

    • object_type: GType<unknown>

      the type id of the #GObject subtype to instantiate

    • parameters: GObject.Parameter[]

      an array of #GParameter

    Returns GObject.Object

Legend

  • Module
  • Object literal
  • Variable
  • Function
  • Function with type parameter
  • Index signature
  • Type alias
  • Type alias with type parameter
  • Enumeration
  • Enumeration member
  • Property
  • Method
  • Interface
  • Interface with type parameter
  • Constructor
  • Property
  • Method
  • Index signature
  • Class
  • Class with type parameter
  • Constructor
  • Property
  • Method
  • Accessor
  • Index signature
  • Inherited constructor
  • Inherited property
  • Inherited method
  • Inherited accessor
  • Protected property
  • Protected method
  • Protected accessor
  • Private property
  • Private method
  • Private accessor
  • Static property
  • Static method